Long-Term Effects of Cannabis on the Brain

Jim Hudziak, M.D.

Professor of Psychiatry, Medicine, Pediatrics and Communication Sciences & Disorders
Director of the Vermont Center for Children, Youth, and Families and The Division of Child Psychiatry
Thomas M Achenbach Endowed Chair of Developmental Psychopathology
University of Vermont College of Medicine/Fletcher Allen Health Care
Visiting Professor, ErasmusMC, Sophia Children’s Hospital, Rotterdam, The Netherlands.
Adjunct Professor of Psychiatry (Child), Washington University School Of Medicine, St. Louis, MO
Adjunct Professor in Psychiatry, Geisel School of Medicine at Dartmouth
Overview

• Introduction to the issue
• Neural pathways affected by long-term cannabis exposure
• Effects of intrauterine cannabis exposure
• Neuroimaging studies
• Summary
Introduction
1936

Say, Larry! I know a reefer?
How you feel? You're just nervous!
What you need is a little pick-me-up!
Go on -- try a reefer.

REEFER MADNESS
Seduction of the Innocent

1999-2001

REEFER MADNESS
The new 'hit' musical

2005

Principal photography completed

REEFER MADNESS
The movie musical

Alan Budney PHD Giesel School of Medicine, Dartmouth
Marijuana/Cannabis / Cannabinoids
Over 100 compounds ; over 70 phytocannabinoids

Delta-9 THC prominent psychoactive constituent

Dose related effects:
- High, euphoria, relaxation
- Cognitive impairment (memory, learning, attention, time perspective)
- Anxiety, Panic, Hallucinations, Psychosis?
- Abuse/Dependence

Alan Budney PHD Giesel School Of Medicine, Dartmouth
Marijuana

Alan Budney PHD, Giesel School Of Medicine, Dartmouth
Legalization of Cannabis

- Recreational use is now legal in two states
- Other states now debating the legalization of recreational use and considering legislation
- Estimated that > 3 billion dollars could be generated in taxes if all states legalized cannabis today
Cannabis: is it really *THAT* bad?

An independent scientific committee in Britain compared 20 drugs in 2010 for the harms they caused to individual users and to society as a whole through crime, family breakdown, absenteeism, and other social ills. Adding up all the damage, the panel estimated that alcohol was the most harmful drug, followed by heroin and crack cocaine. Marijuana ranked eighth, having slightly more than one-fourth the harm of alcohol.

“An independent scientific committee in Britain compared 20 drugs in 2010 for the harms they caused to individual users and to society as a whole through crime, family breakdown, absenteeism, and other social ills. Adding up all the damage, the panel estimated that alcohol was the most harmful drug, followed by heroin and crack cocaine. Marijuana ranked eighth, having slightly more than one-fourth the harm of alcohol.”

Source: Institute of Medicine, 1999

Is there any reason for concern?
What has research over the past two decades revealed about the adverse health effects of recreational cannabis use?

Wayne Hall¹,²,³

The University of Queensland Centre for Youth Substance Abuse Research and The UQ Centre for Clinical Research, Herston, Australia,¹ The National Addiction Centre, Kings College London, London, UK² and National Drug and Alcohol Research Centre, University of New South Wales, New South Wales, Australia³

ABSTRACT

Aims To examine changes in the evidence on the adverse health effects of cannabis since 1993. Methods A comparison of the evidence in 1993 with the evidence and interpretation of the same health outcomes in 2013. Results Research in the past 20 years has shown that driving while cannabis-impaired approximately doubles car crash risk and that around one in 10 regular cannabis users develop dependence. Regular cannabis use in adolescence approximately doubles the risks of early school-leaving and of cognitive impairment and psychoses in adulthood. Regular cannabis use in adolescence is also associated strongly with the use of other illicit drugs. These associations persist after controlling for plausible confounding variables in longitudinal studies. This suggests that cannabis use is a contributory cause of these outcomes but some researchers still argue that these relationships are explained by shared causes or risk factors. Cannabis smoking probably increases cardiovascular disease risk in middle-aged adults but its effects on respiratory function and respiratory cancer remain unclear, because most cannabis smokers have smoked or still smoke tobacco. Conclusions The epidemiological literature in the past 20 years shows that cannabis use increases the risk of accidents and can produce dependence, and that there are consistent associations between regular cannabis use and poor psychosocial outcomes and mental health in adulthood.
Adverse effects of chronic use

Psychosocial outcomes

- Regular cannabis users can develop a dependence syndrome, the risks of which are around 1 in 10 of all cannabis users and 1 in 6 among those who start in adolescence.
- Regular cannabis users double their risks of experiencing psychotic symptoms and disorders, especially if they have a personal or family history of psychotic disorders, and if they initiate cannabis use in their mid-teens.
- Regular adolescent cannabis users have lower educational attainment than non-using peers.
- Regular adolescent cannabis users are more likely to use other illicit drugs.

- Regular cannabis use that begins in adolescence and continues throughout young adulthood appears to produce cognitive impairment but the mechanism and reversibility of the impairment is unclear.
- Regular cannabis use in adolescence approximately doubles the risk of being diagnosed with schizophrenia or reporting psychotic symptoms in adulthood.
- All these relationships have persisted after controlling for plausible confounders in well-designed studies, but some researchers still question whether adverse effects are related causally to regular cannabis use or explained by shared risk factors.

Physical health outcomes

- Regular cannabis smokers have higher risks of developing chronic bronchitis, but it is unclear if it impairs respiratory function.
- Cannabis smoking by middle-aged adults probably increases the risks of myocardial infarction.
The persistence of the association between adolescent cannabis use and common mental disorders into young adulthood

Louisa Degenhardt,1,2, Carolyn Coffey,3 Helena Romaniuk,4, Wendy Swift,1, John B. Carlin,1, Wayne D. Hall3 & George C. Patton3

National Drug and Alcohol Research Centre, University of New South Wales, Sydney, New South Wales, Australia;1 Centre for Health Policy, Programs and Economics, School of Population Health, University of Melbourne, Melbourne, Victoria, Australia;2 Centre for Adolescent Health, Royal Children’s Hospital, Murdoch Children’s Research Institute, University of Melbourne, Melbourne, Victoria, Australia;3 Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute and University of Melbourne Department of Paediatrics, Melbourne, Victoria, Australia;4 and University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia.

ABSTRACT

Aims Debate continues about whether the association between cannabis use in adolescence and common mental disorders is causal. Most reports have focused on associations in adolescence, with few studies extending into adulthood. We examine the association from adolescence until the age of 29 years in a representative prospective cohort of young Australians. Design Nine-wave, 15-year representative longitudinal cohort study with six waves of data collection in adolescence (mean age 14.9–17.4 years) and three in young adulthood (mean age 20.7, 24.1 and 29.1 years). Participants Participants were a cohort of 1943 recruited in secondary school and surveyed at each wave when possible from mid-teens age to their late 20s. Setting Victoria, Australia. Measurements Psychiatric morbidity was assessed with the Revised Clinical Interview Schedule (CIS-R) at each adolescent wave, and as Composite International Diagnostic Interview (CIDI)-defined ICD-10 major depressive episode and anxiety disorder at 29 years. Frequency of cannabis use was measured in the past 6 months in adolescence. Cannabis use frequency in the last year and DSM-IV cannabis dependence were assessed at 29 years. Cross-sectional and prospective associations of these outcomes with cannabis use and dependence were estimated as odds ratios (OR), using multivariable logistic regression models, with the outcomes of interest, major depressive episode (MDE) and anxiety disorder (AD) at 29 years. Findings There were no consistent associations between adolescent cannabis use and depression at age 29 years. Daily cannabis use was associated with anxiety disorder at 29 years (adjusted OR 2.5, 95% confidence interval (CI): 1.2–5.2), as was cannabis dependence (adjusted OR 2.2, 95% CI: 1.1–4.4). Among weekly+ adolescent cannabis users, those who continued to use cannabis use daily at 29 years remained at significantly increased odds of anxiety disorder (adjusted OR 3.2, 95% CI: 1.1–9.2). Conclusions Regular (particularly daily) adolescent cannabis use is associated consistently with anxiety, but not depressive disorder, in adolescence and late young adulthood, even among regular users who then cease using the drug. It is possible that early cannabis exposure causes enduring mental health risks in the general cannabis-using adolescent population.

“Regular (particularly daily) adolescent cannabis use is associated consistently with anxiety... in adolescence and late young adulthood, even among regular users who then cease using the drug.”

“It is possible that early cannabis exposure causes enduring mental health risks in the general cannabis-using adolescent population.”
Neurobiology
Endogenous Cannabinoid System

– Receptors: CB1 and CB2

– Location: where the action is

• Hippocampus
• Basal ganglia
• Cerebellum

- Endogenous cannabinoid: e.g., Anandamide
Concentrations of CB₁ receptors

- Basal Ganglia¹: Movement
- Cerebral Cortex¹: Higher cognitive function
- Cerebellum¹: Movement
- Hypothalamus²: Appetite
- Hippocampus¹: Learning, memory, stress
- Medulla³,⁴: Nausea/vomiting, chemoreceptor trigger zone (CTZ)
- Spinal Cord¹: Peripheral sensation including pain

Cannabinoid System
Receptor Location and Function

- Cerebellum - movement/coordination
- Hippocampus - learning, memory
- Cerebral Cortex - executive function
- Nucleus Accumbens - reward (dopamine system)
- Basal Ganglia - movement
- Hypothalamus - body regulation
- Amygdala - emotional responses
- Spinal Cord - sensation (pain)
- Brain Stem - sleep, arousal, motor
- Central Gray Matter - analgesia
- Nucleus solitary tract - visceral sensation, nausea/vomiting
Potency of Seized Marijuana in the U.S.

103% increase from 1998-2008

Source: University of Mississippi, National Center for Natural Products Research, Potency Monitoring Project Quarterly Report 107 (January 2010)
AFTER HOURS OF THOUGHT ... OR MINUTES OF THOUGHT, WHICHEVER JUST OCCURRED, I THINK MARIJUANA IS NATURE'S WAY OF SAYING, "FORGET IT."
Addiction?

Is it cannabis / marijuana addictive?

Factors impacting its addictive potential?

Persons with mental illnesses?

- What do we mean by self-medication?
ADDICTION / ADDICTIVE POTENTIAL

= Pharmacology (only one part)
= Availability
= Cost
= Genetics
= Intrapersonal Factors (emotional/behavioral)
= Environmental Factors / Alternatives
= Societal Norms and Attitudes

Alan Budney PHD Giesel School Of Medicine, Dartmouth
Clinical Consequences

Dose Dependent / Frequency / Acute vs. Chronic

Medical / physical
- respiratory, cardiac, reproductive system

Behavioral / cognitive
- memory, attention, executive function, judgment/decision-making, driving, sleep, brain structure/function,
- addiction/excessive use and its functional consequences
 - difficult to treat (stop); same types of problems as other substance use disorders

Psychiatric / mental illness
- anxiety, depression, SMI (bipolar, schizophrenia)?
Impact on Mental Illness

- Psychotic Disorders
- Affective Disorders
- Anxiety Disorders / PTSD
- ADHD

- Causal Factor and/or Impact on Existing Illness
Cannabis and Psychosis

Acute effects

Chronic Effects

Causal Influences

Impact on existing illness and its course

The data…
Δ-9-THC Induced Psychotic-like Symptoms In Healthy Subjects in the Laboratory

Positive Symptoms

Alan Budney PHD Giesel School Of Medicine, Dartmouth

(D'Souza et al., Neuropsychopharmacology 2004)
Δ-9-THC Induced Perceptual Alterations In Healthy Subjects

Clinician-Rated

Subject-Rated

Time (Minutes)

Placebo (Vehicle) 2.5 mg THC 5 mg THC

(D'Souza et al., Neuropsychopharmacology 2004)

Alan Budney PHD Giesel School Of Medicine, Dartmouth
Positive symptoms
Negative symptoms?
Memory deficits
Attentional deficits
Inform. processing deficits
Cannabis Use Doubles the risk of psychosis

Table 1 | General population studies of the effect of cannabis use on the risk of psychosis

<table>
<thead>
<tr>
<th>Country in which the study was conducted</th>
<th>Number of participants</th>
<th>Follow up</th>
<th>Odds ratio (95% confidence interval)</th>
<th>Study design</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>4,494</td>
<td>NA</td>
<td>2.4 (1.2, 7.1)</td>
<td>Population based</td>
</tr>
<tr>
<td>Sweden</td>
<td>50,053</td>
<td>25 years</td>
<td>2.1 (1.2, 3.7)</td>
<td>Conscript cohort</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>4,045</td>
<td>3 years</td>
<td>2.8 (1.2, 6.5)</td>
<td>Population based</td>
</tr>
<tr>
<td>Israel</td>
<td>9,724</td>
<td>4–15 years</td>
<td>2.0 (1.3, 3.1)</td>
<td>Population based</td>
</tr>
<tr>
<td>New Zealand (Christchurch)</td>
<td>1,265</td>
<td>3 years</td>
<td>1.8 (1.2, 2.6)</td>
<td>Birth cohort</td>
</tr>
<tr>
<td>New Zealand (Dunedin)</td>
<td>1,253</td>
<td>15 years</td>
<td>3.1 (0.7, 13.3)</td>
<td>Birth cohort</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>1,580</td>
<td>14 years</td>
<td>2.8 (1.79, 4.43)</td>
<td>Population based</td>
</tr>
<tr>
<td>Germany</td>
<td>2,436</td>
<td>4 years</td>
<td>1.7 (1.1, 1.5)</td>
<td>Population based</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>8,580</td>
<td>18 months</td>
<td>1.5 (0.55, 3.94)</td>
<td>Population based</td>
</tr>
</tbody>
</table>

NA, not applicable.

2–fold increase

Morrison, Murray et al., Nature Neuroscience, 2008
Swedish Army Study of Andréasson et al 1987

Risk of schizophrenia-like psychosis at age 26 years
Arseneault et al 2002

Psychosis

Cannabis Use

Cases of Sz per 1,000

No of times cannabis taken

Cannabis users by age 15 years

Cannabis users by age 18 years

Alan Budney PhD Giesel School Of Medicine, Dartmouth
Risk of being a Psychotic Case
(OR adjusted for gender, age, ethnicity, Stimulants, level of Ed)

Frequent Use of High-Potency Cannabis, Drives the Increased Probability of Psychosis in Cannabis Users (Di Forti et al., 2014)

Alan Budney PHD Giesel School Of Medicine, Dartmouth
Daily Use, Especially of High-Potency Cannabis, Drives the Earlier Onset of Psychosis in Cannabis Users (Di Forti et al., 2014)

Alan Budney PHD Giesel School Of Medicine, Dartmouth
Males at higher risk, but doesn’t account for potency and frequency effects (Di Forti et al., 2014)

Alan Budney PHD Giesel School Of Medicine, Dartmouth
Findings provide support that genetic variation at rs2494732 of AKT1 influences the risk of developing a psychotic disorder in cannabis users.

DiForti et al. (2012)
Causality

• Biological Plausibility
• Dose-response
• Strength of the association
• Direction of the effect
• Temporality
• Specificity
• Experimental Evidence
• Consistency
Summary: Cannabis ➔ Psychotic Disorder

• Dose and Frequency Important Factors
 – Age of onset (maybe onset), use of high potency

• Gender influence on early onset is offset by cannabis use

Alan Budney PHD Giesel School Of Medicine, Dartmouth
Cannabis and Depression (and BiPolar?)

- Co-morbidity is high
- Positive associations between marijuana use and depression in adolescent (suicide rates?)
- Data on cannabis use causing depression is not strong
- No data suggesting that cannabis is helpful for depression

Alan Budney PHD Giesel School Of Medicine, Dartmouth
Estimated associations between frequency of cannabis use and mean depression scores at selected ages (15, 20, 25, 30 years) after adjustment for fixed sources of confounding.

Horwood, et al., 2012: *An integrative data analysis of four Australasian cohorts*
Cannabis Use and Anxiety

• Co-morbidity is high
• Positive associations between marijuana use and anxiety in adolescent
• Data on cannabis use leading to anxiety is not equivocal, but is worrisome
• Heavy cannabis use during adolescent predicts AD at 29 yrs, even if stopped using
• No data suggesting that cannabis is helpful for anxiety
What parts of the brain are most affected by cannabis?
Cannabis and the Brain

Cannabis affects brain regions that are strongly implicated in emotion regulation, memory, and impulse control.
Evidence suggests that cannabis affects the connections between these brain regions as well.
How does cannabis affect early brain development and behavior?
Intrauterine Cannabis Exposure
Intrauterine cannabis exposure leads to more aggressive behavior and attention problems in 18-month-old girls

The Department of Child and Adolescent Psychiatry, Erasmus MC, Sophia Children’s Hospital, Rotterdam 3000 CB, The Netherlands
The Generation R Study Group, Erasmus MC, Rotterdam 3000 CA, The Netherlands
University of Vermont, College of Medicine, Department of Psychiatry, Burlington, VT 05405, USA
The Department of Epidemiology Erasmus MC, Rotterdam 3000 CA, The Netherlands
The Faculty of Social and Behavioral Sciences, University of Amsterdam, 1018 VZ, The Netherlands
The Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam 3000 CA, The Netherlands
The Department of Pediatrics, Erasmus MC, Rotterdam 3000 CA, The Netherlands
The Department of Psychiatry, Academic Medical Center University of Amsterdam, 1100 DD, The Netherlands
The Amsterdam Institute for Addiction Research, Amsterdam 1001 AS, The Netherlands

ARTICLE INFO

Article history:
Received 16 December 2010
Received in revised form 7 March 2011
Accepted 8 March 2011
Available online 5 April 2011

Keywords:
Intrauterine cannabis use exposure
Paternal cannabis use
Smoking in pregnancy
Child behavior

ABSTRACT

Background: The development of the fetal endocannabinoid receptor system may be vulnerable to maternal cannabis use during pregnancy and may produce long-term consequences in children. In this study, we aimed to determine the relationship between gestational cannabis use and childhood attention problems and aggressive behavior.

Methods: Using a large general population birth cohort, we examined the associations between parental prenatal cannabis and tobacco use and childhood behavior problems at 18 months measured using the Child Behavior Checklist in N = 4077 children. Substance use was measured in early pregnancy.

Results: Linear regression analyses demonstrated that gestational exposure to cannabis is associated with behavioral problems in early childhood but only in girls and only in the area of increased aggressive behavior (β = 2.02; 95% CI: 0.30–3.73; p = 0.02) and attention problems (β = 1.04; 95% CI: 0.46–1.62; p < 0.001). Furthermore, this study showed that long-term (but not short term) tobacco exposure was associated with behavioral problems in girls (β = 1.16; 95% CI: 0.20–2.12; p = 0.02). There was no association between cannabis use of the father and child behavior problems.

Conclusions: Our results suggest that intrauterine exposure to cannabis is associated with an increased risk for aggressive behavior and attention problems as early as 18 months of age in girls, but not boys. Further research is needed to explore the association between prenatal cannabis exposure and child behavior at later ages. Our data support educating future mothers about the risk to their babies should they smoke cannabis during pregnancy.

© 2011 Elsevier Ireland Ltd. Open access under the Elsevier OA license.
Intrauterine Cannabis Exposure Affects Fetal Growth Trajectories: The Generation R Study

HANAN EL MAROUN, M.Sc., HENNING TIEMEIER, Ph.D., ERIC A.P. STEEGERS, Ph.D., M.D., VINCENT W.V. JADDOE, Ph.D., M.D., ALBERT HOFMAN, Ph.D., M.D., FRANK C. VERHULST, Ph.D., M.D., WIM VAN DEN BRINK, Ph.D., M.D., and ANJA C. HUIZINK, Ph.D.

ABSTRACT

Objective: Cannabis is the most commonly consumed illicit drug among pregnant women. Intrauterine exposure to cannabis may result in risks for the developing fetus. The importance of intrauterine growth on subsequent psychological and behavioral child development has been demonstrated. This study examined the relation between maternal cannabis use and fetal growth until birth in a population-based sample. Method: Approximately 7,452 mothers enrolled during pregnancy and provided information on substance use and fetal growth. Fetal growth was determined using ultrasound measures in early, mid-, and late pregnancy. Additionally, birth weight was assessed. Results: Maternal cannabis use during pregnancy was associated with growth restriction in mid- and late pregnancy and with lower birth weight. This growth reduction was most pronounced for fetuses exposed to continued maternal cannabis use during pregnancy. Fetal weight in cannabis-exposed fetuses showed a growth reduction of -14.44 (95% confidence interval -22.94 to -5.94, $p = .001$) and head circumference (-0.21 mm/week, 95% confidence interval -0.42 to 0.02, $p = .07$), compared with nonexposed fetuses. Maternal cannabis use during pregnancy resulted in more pronounced growth restriction than maternal tobacco use. Paternal cannabis use was not associated with fetal growth restriction. Conclusions: Maternal cannabis use, even for a short period, may be associated with several adverse fetal growth trajectories. J. Am. Acad. Child Adolesc. Psychiatry, 2009;48(12):1173–1181. Key Words: intrauterine cannabis exposure, fetal growth, ultrasound measurements, longitudinal population cohort.
Neuroimaging Studies of Long-Term Cannabis Use
Long-Term Effects of Cannabis on Brain Structure

Giovanni Battistella¹,⁸, Eleonora Fornari¹,²,⁸, Jean-Marie Annoni³, Haithem Chtioui⁴, Kim Dao⁴, Marie Fabritius⁵, Bernard Favrat⁶, Jean-Frédéric Mall⁷, Philippe Maeder⁴,⁸ and Christian Giroud⁵,⁸

¹Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland; ²CIBM (Centre d’Imagerie Biomédica), Centre Hospitalier Universitaire Vaudois (CHUV) unit, Lausanne, Switzerland; ³Neurology Units, Department of Medicine, University of Fribourg, Fribourg, Switzerland; ⁴Department of Clinical Pharmacology and Toxicology, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, Switzerland; ⁵CURML (University Center of Legal Medicine), UTCF (Forensic Toxicology and Chemistry Unit), Lausanne, Switzerland; ⁶CURML (University Center of Legal Medicine), UMPT (Unit of Psychology and Traffic Medicine), Lausanne and Geneva, Switzerland; ⁷Department of Psychiatry, SUIPA (Service Universitaire de Psychiatrie de l’Age Avancé), CHUV, Lausanne, Switzerland

The dose-dependent toxicity of the main psychoactive component of cannabis in brain regions rich in cannabinoid CB1 receptors is well known in animal studies. However, research in humans does not show common findings across studies regarding the brain regions that are affected after long-term exposure to cannabis. In the present study, we investigate (using Voxel-based Morphometry) gray matter changes in a group of regular cannabis smokers in comparison with a group of occasional smokers matched by the years of cannabis use. We provide evidence that regular cannabis use is associated with gray matter volume reduction in the medial temporal cortex, temporal pole, parahippocampal gyrus, insula, and orbitofrontal cortex; these regions are rich in cannabinoid CB1 receptors and functionally associated with motivational, emotional, and affective processing. Furthermore, these changes correlate with the frequency of cannabis use in the 3 months before inclusion in the study. The age of onset of drug use also influences the magnitude of these changes. Significant gray matter volume reduction could either from heavy consumption unrelated to the age of onset or instead from recreational cannabis use initiated at an adolescent age. In contrast, the larger gray matter volume detected in the cerebellum of regular smokers without any correlation with the monthly consumption of cannabis may be related to developmental (ontogenic) processes that occur in adolescence.

Neuropsychopharmacology (2014) 39, 2041–2048; doi:10.1038/npp.2014.67; published online 16 April 2014
Blue areas indicate areas of reduced volume in regular cannabis users compared to occasional users.

Figure 1 Voxel-Based Morphometry results on gray matter. Cold color bar shows regions where gray matter volume is lower in regular smokers compared with occasional ones. Hot color bar represents the opposite contrast. Maps are thresholded at $P<0.005$ and $k>60$ and superposed on a standard brain in the MNI space. Figure shows results in planes centered at $-26, 7, 14$ mm and $-48, 10, -19$ mm. Color bars represent T score.

Figure 2 (a) Correlation between the modulated gray matter intensity at the center of gravity of the significant clusters and the monthly frequency of joints smoked during 3 months before inclusion in the study. Lines represent the fitting of the distribution of the values. Pearson’s correlation coefficient and P-value are shown at the bottom of each plot. (b) Mean GM volume across the four subgroups (Occasional late, Occasional early, Regular late, Regular early). Whiskers represent 95% confidence interval, horizontal lines represent significant comparisons and stars the significance level ($P<0.05$).
Anticipating future outcomes is central to decision making and a failure to consider long-term consequences may lead to impulsive choices. Adolescence is a vulnerable period during which underdeveloped prefrontal cortical systems may contribute to poor judgment, impulsive choices, and substance abuse. Conversely, substance abuse during this period may alter neural systems involved in decision making and lead to greater impulsivity. Although a broad neural network which supports decision making undergoes extensive change during adolescent development, one region that may be critical is the medial prefrontal cortex. Altered functional integrity of this region may be specifically related to reward perception, substance abuse, and dependence. In the present investigation, we acquired structural magnetic resonance images (MRI), using a 3T Siemens Inc scanner, from 18 cannabis abusing adolescents (CA; 2 female and 16 male subjects; mean age, 17.7 years; range 16–19 years), and 18 healthy controls (HC; 6 female and 12 male subjects; mean age, 17.2 years; range 16–19 years). In order to measure medial orbital prefrontal cortex (moPFC) morphology related to substance abuse and impulsivity, semi-automated cortical reconstruction and volumetric segmentation of MRIs was performed with FreeSurfer. Impulsivity was evaluated with the Barratt Impulsiveness Scale (BIS). Our results indicate that cannabis abusing adolescents have decreased right moPFC volume compared to controls, $p = 0.01$, $d = 0.82$, CI₉₅ = 0.21, 1.59. Cannabis abusing adolescents also show decreased future orientation, as indexed by the BIS non-planning subscale, when compared to controls, $p = 0.01$, $d = 0.89$, CI₉₅ = 0.23, 1.65. Moreover, total moPFC volume was positively correlated with age of first use $r(18) = 0.48$, $p < 0.03$, suggesting that alterations in this region may be related to initiation of cannabis use or that early initiation may lead to reduced moPFC volume.

Keywords: adolescence, cannabis, prefrontal, orbitofrontal, decision making, impulsivity, marijuana, development
Earlier age of first use was associated with greater volumetric reductions in medial orbitofrontal cortex (mOFC).
Long-term effects of marijuana use on the brain

Francesca M. Filley*,1, Sina Aslanab,1, Vince D. Calhound.*,1, Jeffrey S. Spencer*, Eswar Damara*, Arvind Caprihan*, and Judith Segall

*Center for BrainHealth, University of Texas, Dallas, TX 75235; †Advance MRI, LLC, Frisco, TX 75034; ‡The Mind Research Network, Albuquerque, NM 87106; and §University of New Mexico, Albuquerque, NM 87131

Edited by Cameron Carter, University of California Davis Centre for Neuroscience, Sacramento, CA, and accepted by the Editorial Board October 13, 2014 (received for review August 8, 2014)

Questions surrounding the effects of chronic marijuana use on brain structure continue to increase. To date, however, findings remain inconclusive. In this comprehensive study that aimed to characterize brain alterations associated with chronic marijuana use, we measured gray matter (GM) volume via structural MRI across the whole brain by using voxel-based morphology, synchronizing among abnormal GM regions during resting state fMRI, functional connectivity MRI, and white matter integrity (i.e., structural connectivity) between the abnormal GM regions via diffusion tensor imaging in 48 marijuana users and 52 age- and sex-matched nonusing controls. The results showed that compared with controls, marijuana users had significantly less bilateral orbitofrontal gyri volume, higher functional connectivity in the orbitofrontal cortex (OFC) network, and higher structural connectivity in tracts that innervate the OFC (forceps minor tract) as measured by fractional anisotropy (FA). Increased OFC functional connectivity in marijuana users was associated with earlier age of onset. Lastly, a quadratic trend was observed suggesting that the FA of the forceps minor tract initially increased following regular marijuana use but decreased with protracted regular use. This pattern may indicate differential effects of initial and chronic marijuana use that may reflect complex neuroadaptive processes in response to marijuana use. Despite the observed age of onset effects, longitudinal studies are needed to determine causality of these effects.

The rate of marijuana use has had a steady increase since 2007 (20). Among a~500 chemical compounds, marijuana’s effects are primarily attributed to 9,9-tetrahydrocannabinol (THC), which is the main psychoactive ingredient in the cannabis plant. THC binds to cannabinoid receptors, which are ubiquitous in the brain. Consequently, exposure to THC leads to neural changes affecting diverse cognitive processes. These changes have been observed to be long-lasting, suggesting that neural changes due to marijuana use may affect neural architecture (2). However, to date, these brain changes as a result of marijuana use remain equivocal. Specifically, although functional changes have been widely reported across cognitive domains in both adult and adolescent cannabis users (3–6), structural changes associated with marijuana use have not been consistent. Although some have reported decreases in regional brain volume such as in the hippocampus, orbitofrontal cortex, amygdala, and striatum (7–12), others have reported increases in amygdala, nucleus accumbens, and cerebellar volumes in chronic marijuana users (13–15).

However, others have reported no observable difference in global or regional gray or white matter volumes in chronic marijuana users (16, 17). These inconsistencies could be attributed to methodological differences across studies pertaining to study samples (e.g., severity of marijuana use, age, sex, comorbidity with other substance use or psychiatric disorders) and/or study design (e.g., study modality, regions of interest).

Because THC binds to cannabinoid 1 (CB1) receptors in the brain, when differences are observed, these morphological changes associated with marijuana use have been reported in CB1 receptor-enriched areas such as the orbitofrontal cortex, anterior cingulate, striatum, amygdala, insula, hippocampus, and cerebellum (11, 13, 18). CB1 receptors are widely distributed in the neocortex, but more restricted in the hindbrain and the spinal cord (19). For example, in a recent study by Battistella et al. (18), they found significant brain volume reductions in the medial temporal cortex, temporal pole, parahippocampal gyrus, insula, and orbitofrontal cortex (OFC) in regular marijuana users compared with occasional users. Whether these reductions in brain volume lead to downstream changes in brain organization and function, however, is still unknown.

Nevertheless, emerging studies have demonstrated a link between brain structure and connectivity. For example, Van den Heuvel et al. and Greicius et al. demonstrated robust structural connections between white matter indices and functional connectivity strength within the default mode network (20, 21). Similarly, others have reported correlated patterns of gray matter structure and connectivity that are in many ways reflective of the underlying intrinsic networks (22). Thus, given the literature suggesting a direct relationship between structural and functional connectivity, it is likely that connectivity changes would also be present where alterations in brain volume are observed as a result of marijuana use.

The goal of this study was to characterize alterations in brain morphology and determine potential downstream effects in connectivity as a result of chronic marijuana use. To address the existing inconsistencies in the literature that may be in part due to methodological issues, we (i) used three different MRI techniques to investigate a large cohort of well-characterized chronic cannabis users with a wide age range (allowing for characterization without developmental or maturational biases) and compared them to age- and sex-matched nonusing controls; (ii) examined observable global (rather than select) gray matter

Significance

The existing literature on the long-term effects of marijuana on the brain provides an inconsistent picture (i.e., presence or absence of structural changes) due to methodological differences across studies. We overcome these methodological issues by collecting multimodal measures in a large group of chronic marijuana users with a wide age range that allows for characterization of changes across lifespan without developmental or maturational biases as in other studies. Our findings suggest that chronic marijuana use is associated with complex neuroadaptive processes and that onset and duration of use have unique effects on these processes.

Author contributions: F.M.F. and V.D.C. designed research; F.M.F. and J.S. performed research; S.A. and J.S. analyzed data; and F.M.F. and S.A. wrote the paper. The authors declare no conflict of interest.

This article is a PNAS Direct Submission. C.C. is a guest editor invited by the Editorial Board.

Published online October 13, 2014.

To whom correspondence should be addressed: Email: francesca.filley@utsouthwestern.edu

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1410291111/DCSupplemental.

1To whom correspondence should be addressed: Email: francesca.filley@utsouthwestern.edu.
Marijuana users linked to reduced bilateral orbitofrontal cortex volume...

Fig. 1. Group comparison of the gray matter volume by SPMB plus DARTEL analysis demonstrates significant reduction of gray matter volume in bilateral orbitofrontal gyri (AAL atlas) in marijuana users compared with controls. Right side of the image represents the right hemisphere in axial view.

And, marijuana users exhibited higher resting activity in the bilateral orbitofrontal cortex and anterior temporal regions.

Fig. 2. (A) The average functional connectivity maps (i.e., OFC network; bilateral OFC and temporal gyri) of the control and cannabis groups are superimposed on their average T₁-weighted image. For illustration purposes, the z-score maps were arbitrarily thresholded (z score ≥ 2, k ≥ 50) to qualitatively visualize the difference in the intensity and cluster size. (B) Mean fcMRI z scores are shown for the orbitofrontal network for cannabis and controls groups. The cannabis group showed higher resting activity in the bilateral OFC and temporal gyri compared with the control group.
Continued marijuana use is associated with reduced microstructural integrity (\(\downarrow\) fractional anisotropy, \(\uparrow\) radial diffusivity) of white matter pathways connecting prefrontal areas.

Fig. 3. A representative participant’s forceps minor tract (in red) and gray matter nodes (in blue) is overlaid on its corresponding fractional anisotropy map.

Fig. 4. The relationship between duration of marijuana use and forceps minor’s FA (A) and RD (B). The quadratic curve showed the best fit per AIC. The x axis has been transformed to "square root of years of use" because of gap between participants’ years of use.
Effect of long-term cannabis use on axonal fibre connectivity

Andrew Zalesky,1 Nadia Solowij,2 Murat Yücel,1 Dan I. Lubman,3 Michael Takagi,1 Ian H. Harding,1 Valentina Lorenzetti,1 Ruopeng Wang,4 Karissa Searle,4 Christos Pantelis1 and Marc Seal5

1 Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, 3053, Australia
2 School of Psychology, University of Wollongong, Wollongong, 2522, Australia
3 Turning Point Alcohol and Drug Centre, Eastern Health and Monash University, Melbourne, 3065, Australia
4 Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, USA
5 Murdoch Childrens Research Institute, Royal Children’s Hospital Melbourne, 3052, Australia

Correspondence to: Associate Prof. Nadia Solowij,
School of Psychology,
University of Wollongong,
Northfields Avenue,
Wollongong,
NSW 2522, Australia
E-mail: nsolow@uow.edu.au

Cannabis use typically begins during adolescence and early adulthood, a period when cannabinoid receptors are still abundant in white matter pathways across the brain. However, few studies to date have explored the impact of regular cannabis use on white matter structure, with no previous studies examining its impact on axonal connectivity. The aim of this study was to examine axonal fibre pathways across the brain for evidence of microstructural alterations associated with long-term cannabis use and to test whether age of regular cannabis use is associated with severity of any microstructural change. To this end, diffusion-weighted magnetic resonance imaging and brain connectivity mapping techniques were performed in 89 cannabis users with longstanding histories of heavy use and 33 matched controls. Axonal connectivity was found to be impaired in the right fimbria of the hippocampus (fornix), splenium of the corpus callosum and commissural fibres. Radial and axial diffusivity in these pathways were associated with the age at which regular cannabis use commenced. Our findings indicate long-term cannabis use is hazardous to the white matter of the developing brain. Delaying the age at which regular use begins may minimize the severity of microstructural impairment.

Reduced connectivity in the hippocampal commissure, posterior portion of the corpus callosum, and fimbria

Figure 3 The right fimbria of the hippocampus, hippocampal commissure and splenium comprised fewer streamlines in cannabis users compared to non-users (P < 0.05, corrected). Voxels interconnected by fewer streamlines are coloured red and the corresponding streamlines via which they are interconnected are coloured such that: left–right is red, superior–inferior is blue and anterior–posterior is green. A and B show different oblique views. The splenium and hippocampal commissure are obscured in B by the sagittal slice of the underlay image.
Substance Use Research at the Vermont Center for Children, Youth, and Families
Brain Structural Correlates of Cannabis Use in Young, Healthy Ice Hockey Players
Sample

• Twenty-nine male subjects were recruited from preparatory school and collegiate ice hockey teams, and were between 14 and 23 years of age ($M = 17.8$, $SD = 2.2$).

• Of the 29 subjects that enrolled in the study, 27 underwent both neuroimaging and cognitive testing (2 subjects were unable to complete cognitive testing).
Cortical Thinning Associated with Lifetime Cannabis Use

N = 27
*Controlling for age, ICV, alcohol use, and concussion history
Cannabis Use and the Reward Pathway
Cannabis and the Reward Pathway

Nucleus Accumbens
Cannabis Use Is Quantitatively Associated with Nucleus Accumbens and Amygdala Abnormalities in Young Adult Recreational Users

Jodi M. Gilman,1,4,5 John K. Kuster,1,2,6 Sang Lee,1,6,7 Myung Joo Lee,1,6,7 Byoung Woo Kim,1,6 Nikos Makris,3,5 Andre van der Kouwe,4,5 Anne J. Blood,1,2,4,7† and Hans C. Breiter1,2,4,7†

1Laboratory of Neuroimaging and Genetics, Department of Psychiatry, 2Mood and Motor Control Laboratory, 3Center for Morphometric Analysis, Department of Psychiatry, and 4Athinoula A. Martinos Center in Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, 5Harvard Medical School, Boston, Massachusetts 02115, and 6Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois 06011

Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.

Key words: cannabis; gray matter density; marijuana; multimodal imaging; reward; topology/shape
More frequent cannabis use was associated with larger nucleus accumbens volumes—an area that has been termed the “pleasure center” of the brain and strongly tied to addictive behaviors.
Weed or Wheel! fMRI, Behavioural, and Toxicological Investigations of How Cannabis Smoking Affects Skills Necessary for Driving

Giovanni Battistella¹,², Eleonora Fornari¹,²,³, Aurélien Thomas⁴, Jean-Frédéric Mall⁴, Haithem Chtioui⁵, Monique Appenzeller⁵, Jean-Marie Annoni⁵, Bernard Favrat⁷, Philippe Maeder¹,², Christian Giroud⁷,³

¹ Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland, ² CIBM (Centre d’Imagerie Biomédicale), Centre Hospitalier Universitaire Vaudois (CHUV) unit, Lausanne, Switzerland, ³ CURML (University Center of Legal Medicine), UTCF (Forensic Toxicology and Chemistry Unit), Geneva, Switzerland, ⁴ Department of Psychiatry, SULPAA (Service Universitaire de Psychiatrie de l’Age Avancé), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland, ⁵ Department of Clinical Pharmacology and Toxicology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland, ⁶ Neurology Unit, Department of Medicine, University of Fribourg, Fribourg, Switzerland, ⁷ CURML (University Center of Legal Medicine), UMPT (Unit of Psychology and Traffic Medicine), Lausanne and Geneva, Switzerland, ⁸ CURML (University Center of Legal Medicine), UTCF (Forensic Toxicology and Chemistry Unit), Lausanne, Switzerland

Abstract

Marijuana is the most widely used illicit drug, however its effects on cognitive functions underling safe driving remain mostly unexplored. Our goal was to evaluate the impact of cannabis on the driving ability of occasional smokers, by investigating changes in the brain network involved in a tracking task. The subject characteristics, the percentage of Δ⁹-Tetrahydrocannabinol in the joint, and the inhaled dose were in accordance with real-life conditions. Thirty-one male volunteers were enrolled in this study that includes clinical and toxicological aspects together with functional magnetic resonance imaging of the brain and measurements of psychomotor skills. The fMRI paradigm was based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. We show that cannabis smoking, even at low Δ⁹-Tetrahydrocannabinol blood concentrations, decreases psychomotor skills and alters the activity of the brain networks involved in cognition. The relative decrease of Blood Oxygen Level Dependent response (BOLD) after cannabis smoking in the anterior insula, dorsomedial thalamus, and striatum compared to placebo smoking suggests an alteration of the network involved in saliency detection. In addition, the decrease of BOLD response in the right superior parietal cortex and in the dorsolateral prefrontal cortex indicates the involvement of the Control Executive network known to operate once the saliencies are identified. Furthermore, cannabis increases activity in the rostral anterior cingulate cortex and ventromedial prefrontal cortices, suggesting an increase in self-oriented mental activity. Subjects are more attracted by intrapersonal stimuli ("self") and fail to attend to task performance, leading to an insufficient allocation of task-oriented resources and to sub-optimal performance. These effects correlate with the subjective feeling of confusion rather than with the blood level of Δ⁹-Tetrahydrocannabinol. These findings bolster the zero-tolerance policy adopted in several countries that prohibits the presence of any amount of drugs in blood while driving.

Editor: Lin Lu, Peking University, China

Received July 3, 2012; Accepted November 20, 2012; Published January 2, 2013

Copyright: © 2013 Battistella et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported by the Swiss National Scientific Research Foundation (grant SNF 320030_127507/1) and the Faculty of Biology and Medicine of the University of Lausanne (multidisciplinary project FMV). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Philippe.Maeder@chuv.ch

† These authors contributed equally to this work.
Decrease of BOLD response in the right superior parietal cortex and in the dorsolateral prefrontal cortex indicates the involvement of the Control Executive network. Furthermore, cannabis increases activity in the rostral anterior cingulate cortex and ventromedial prefrontal cortices, suggesting an increase in self-oriented mental activity. Subjects are more attracted by intrapersonal stimuli (“self”) and fail to attend to task performance, leading to an insufficient allocation of task-oriented resources and to sub-optimal performance.
Structural and Functional Imaging Studies in Chronic Cannabis Users: A Systematic Review of Adolescent and Adult Findings

Albert Batalla1,2,3, Sagnik Bhattacharyya4, Murat Yücel5, Paolo Fusar-Poli4, Jose Alexandre Crippa5,6, Santiago Nogué7, Marta Torrens8,9, Jesús Pujol10, Magí Farré8,9, Rocío Martín-Santos1,2,4*

1 Psychiatry, Institute of Neurosciences, Hospital Clinic, IDIBAPS, CIBERSAM, Barcelona, Spain. 2 Department of Psychiatry and Clinical Psychology, University of Barcelona, Barcelona, Spain. 3 Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia. 4 Department of Psychology Studies, King's College London, Institute of Psychiatry, London, United Kingdom. 5 Neuroscience and Cognitive Behavior Department, University of São Paulo, Ribeirão Preto, Brazil. 6 National Science and Technology Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil. 7 Clinical Toxicology Unit, Emergency Department, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain. 8 Neuroscience Programs, Pharmacology Unit and Drug Addiction Unit, IMIM-HIMA-Parc de Salut Mar, Autonomous University of Barcelona, Barcelona, Spain. 9 Red de Trastornos Addictivos (RETIC), IMIM-HIMA-Parc de Salut Mar, Barcelona, Spain. 10 Institut d’Alta Tecnologia PRBB, CRC Mar, Hospital del Mar, Barcelona, Spain

Abstract

Background: The growing concern about cannabis use, the most commonly used illicit drug worldwide, has led to a significant increase in the number of human studies using neuroimaging techniques to determine the effect of cannabis on brain structure and function. We conducted a systematic review to assess the evidence of the impact of chronic cannabis use on brain structure and function in adults and adolescents.

Methods: Papers published until August 2012 were included from EMBASE, Medline, PubMed and LILACS databases following a comprehensive search strategy and pre-determined set of criteria for article selection. Only neuroimaging studies involving chronic cannabis users with a matched control group were considered.

Results: One hundred and forty-two studies were identified, of which 43 met the established criteria. Eight studies were in adolescent population. Neuroimaging studies provide evidence of morphological brain alterations in both population groups, particularly in the medial temporal and frontal cortices, as well as the cerebellum. These effects may be related to the amount of cannabis exposure. Functional neuroimaging studies suggest different patterns of resting global and brain activity during the performance of several cognitive tasks both in adolescents and adults, which may indicate compensatory effects in response to chronic cannabis exposure.

Limitations: However, the results pointed out methodological limitations of the work conducted to date and considerable heterogeneity in the findings.

Conclusion: Chronic cannabis use may alter brain structure and function in adult and adolescent population. Further studies should consider the use of convergent methodology, prospective large samples involving adolescent to adulthood subjects, and data-sharing initiatives.

Editor: Lin Lu, Peking University, China

Received September 12, 2012; Accepted January 2, 2013; Published February 4, 2013

Copyright: © 2013 Batalla et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study has been done in part with Spanish grants Plan Nacional sobre Drogas, Mirkleario de Salud y Consumo PN13/010 and PNSD0006/101 (R. Martín-Santos); and the support of DUR-Of Generalitat de Catalunya SGR2009/1433 (R. Martín-Santos, J.A. Crippa) and the Technology Institute for Translational Medicine (INCT-TM, Consell Nacional de Desenvolució Científicha e Tecnològica (CNCT), Brazil (J.A. Crippa, R. Martín-Santos). S. Bhattacharyya is supported by a Clinician Scientist award from the National Institute of Health Research, UK; and J.A. Crippa receives a CNPq (Brazil) productivity award (IC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: rmsantos@clinic.ub.es
Review Findings

• In terms of structural findings, the most consistently reported brain alteration was reduced hippocampal volume among adult cannabis users—which was shown to persist even after several months of abstinence in one study and also to be related to amount of cannabis use (Ashtari et al., 2011; Cousijn et al., 2012; Matochik et al., 2005; Yücel et al., 2008).

• Diffusion imaging studies found differences in the mean diffusivity or fractional anisotropy in the corpus callosum and the frontal white matter (Barrick et al., 2008; Gruber et al., 2011)

Fig. 2. Relation between grey matter volume in Regions of Interest and individual characteristics of cannabis use and dependence in heavy cannabis users. (A) Right amygdala volume correlated negatively with severity of cannabis dependence (CUDIT score). (B) Bilateral hippocampus volume correlated negatively with weekly cannabis use (gram). Clusters of significant volume differences (p < .005, FWE cluster-corrected at p < .05 adjusted for region of interest volume) are overlaid on a standard MNI brain. Right side of the brain is depicted at right side. Graphs show correlation of proportional volume in peak voxel with the dependent variable of interest.
Functional imaging studies of chronic cannabis users have demonstrated altered patterns of brain activity during a range of cognitive tasks—including tasks of attention, memory, and behavioral control.

- During a visual-attention task, both active and abstinent chronic cannabis users demonstrated *decreased activation in the right prefrontal, medial and dorsal parietal cortices* (Chang et al., 2006)

- Early age of onset and estimated cumulative cannabis lifetime exposure were both associated with *reduced activation in the right prefrontal cortex* (Chang et al., 2006)

- Block et al. (2002) found that cannabis users performed verbal memory tasks more poorly than controls, and their poorer performance was associated with *reduced activation in the prefrontal cortex and greater activation in the posterior cerebellum*

- Jager et al. (2007) described *attenuated activity in the right dorsolateral prefrontal cortex and bilateral parahippocampal gyri* in cannabis users despite normal performance in an associative memory task
Summary
Summary

Epidemiology studies indicate that cannabis use increases the risk of accidents and can produce dependence, and that there are consistent associations between regular cannabis use and poor psychosocial outcomes and mental health in adulthood.

Structural neuroimaging studies of long-term cannabis use consistently reveal volumetric reductions in key emotion regulatory regions of the brain—which may account for associations between anxiety and cannabis use.

Structural neuroimaging studies of long-term cannabis use also consistently reveal volumetric reductions in the hippocampus—a region of the brain strongly implicated in learning and memory. Such findings may explain epidemiological reports of cannabis use being associated with cognitive impairment and lower educational attainment.
Functional imaging studies of chronic cannabis users have demonstrated altered patterns of brain activity during a range of cognitive tasks—including tasks of attention, memory, and behavioral control.
Summary

• Cannabis use is associated with increased levels of mental illness; this relationship appears to be moderated by frequency of use and potency of the substance.

• Growing evidence that cannabis use may have causal impact on lowering of the age of onset of Psychotic Disorders; related to age of onset of cannabis use, frequency and potency.
 - Probability of occurrence is “low” in low risk samples

• Cannabis use can probably be considered a risk factor for poor outcomes in functioning across mental illnesses.

• Data do not support the use of cannabis to treat any type of mental illness

Alan Budney PHD Giesel School Of Medicine, Dartmouth
ncpic.org.au

http://www.drugabuse.gov/drugs-abuse/marijuana

Alan Budney PHD Giesel School Of Medicine, Dartmouth
Acknowledgements

• Matt Albaugh PHD from my lab for help in preparing this talk.

• Alan Budney PHD at Dartmouth:
 – Borrowed Sides
 – and in my mind at least, the world’s expert on the effects of cannabis on behavior and health outcomes.