Surveillance2006

Vermont Yankee Nuclear Power Station

Report on Public Health Monitoring June 15, 2007

108 Cherry Street, PO Box 70 Burlington, VT 05402 1.802.863.7341

healthvermont.gov

Vermont Department of Health Table of Contents

Table of Contents

Executive Summary	4
Introduction	5
Program Results Summary	9
Ionizing Radiation Risks	13
Surveillance Methods	20
Direct Gamma Radiation Results	27
Air Sampling Results	44
Water Sampling Results	63
Food Chain Sampling Results	82

Executive Summary

This 2006 Vermont Yankee Nuclear Power Station Surveillance Report is the most recent such report. Similar reports have been compiled annually by the Vermont Department of Health since 1971. Over the years the annual report has expanded from a small number of surveys in 1971 to the 1,300 different measurements of the air, water, milk, soil, vegetation, sediment and fish the Vermont Department of Health obtained in 2006.

Environmental surveillance helps verify that Vermont Yankee is operating in compliance with Department of Health regulations designed to protect the health and safety of Vermonters. Should measurements indicate a lack of compliance, the station is notified, an investigation is undertaken to determine if the measurements are accurate, and, if so, remedial actions are taken to prevent recurrence. Overall, the Department of Health found no issues of non-compliance in its environmental surveillance of Vermont Yankee in 2006.

Particular interest was generated in 2005 when Vermont Yankee was notified that Department of Health quarterly and annual limits on direct gamma radiation at the site boundary may have been exceeded in 2004. Using past interpretations of uncertainty as precedent, the Vermont Department of Health now considers those measurements to have been compliant. A similar situation exists for 2006. For both 2004 and 2006, site boundary direct gamma radiation doses were less than the State's interpretation of the limit of 20 plus or minus 5 millirem per year, where plus or minus 5 millirem accounts for the dosimeter uncertainty.

As important as they are for indicating compliance, the samples and measurements taken over the course of 2006 may also be taken as evidence that no significant adverse health effects from radiological exposures are likely from the operation of Vermont Yankee Nuclear Power Station. To test this hypothesis, the Vermont Department of Health has for the first time in this report published statistics regarding specific health outcomes for people who live near the Station. In particular, cancer incidence and cancer mortality rates in the communities around Vermont Yankee were found not to differ significantly from those in the rest of Windham County, Vermont or the United States.

A summary table of environmental surveillance results is found in the Introduction section, and detailed presentations of the sampling methods and data are also included in this report. The sampling and measurements reported here are sometimes complex, and we invite all who read this report to contact the radiological health staff at the Vermont Department of Health to answer any questions they may have.

Introduction

Environmental surveillance of Vermont Yankee Nuclear Power Station is important. This report profiles the radiological conditions around Vermont Yankee Nuclear Power Station using samples and measurements in the communities surrounding the station. In reviewing the data tabulated here, you will find comparisons of some 2006 results to long-term historical trends. Generally, these comparisons show no significant increased radiological exposures due to Vermont Yankee Nuclear Power Station operations.

You may also find results that are compared to background levels. Background levels, in this case, are the levels of radioactivity in the air, water and earthen materials not attributable to Vermont Yankee Nuclear Power Station. Measurements above background may generally be attributed to the station, other uses of radioactivity in the measurement area, and changing meteorological conditions. The report also includes maps that show the locations where samples are collected or where measurements are made.

Some samples and measurements are being collected or made continuously. Other samples are taken periodically. All of the samples are analyzed by the Vermont Department of Health Laboratory in Burlington, Vermont. You will find the results of all of these samples and measurements in this report:

- The direct gamma radiation emanations as measured continuously at dozens of thermoluminescent dosimeter (TLD) sites.
- The amount of radioactive particulates and radioactive iodine that may be found in the air as collected with numerous continuous air samplers.
- Water from wells and waterways surrounding the plant and milk from local dairy farms that are sampled every month to determine the amount of natural and manmade radioactivity within them.

Various wild and cultivated vegetation, river bed sediments, fish and soils that are sampled at least twice annually, and analyzed for man-made and naturally occurring radioactivity.

2006 was notable for three reasons. First, Vermont Yankee was authorized to increase reactor power by 20 percent. With the Extended Power Uprate, Vermont Yankee Nuclear Power Station increased its potential to impact offsite public doses. Offsite public doses may be affected by increased direct gamma radiation, increased discharges into ground and surface water, and increased emissions of particulates, gases and vapors from the plant stack and other sources. With the Extended Power Uprate, Vermont Yankee estimates direct gamma radiation alone could increase by as much as 26 percent.

The second important development was installation of a turbine shield at Vermont Yankee Nuclear Power Station in May 2006. This shield was designed to decrease gamma radiation levels from the high pressure turbine and at the site boundary by 30 percent. Vermont Department of Health measurements before and after installation of the turbine shield appear to support the premise that the turbine shield negates the increased direct gamma radiation levels of the Extended Power Uprate.

The third major development was the work conducted by Oak Ridge Associated Universities. Oak Ridge Associated Universities was hired by the Department of Health as a third party expert to evaluate Department of Health and Vermont Yankee determinations of direct gamma radiation dose at the Vermont Yankee Nuclear Power Station site boundary. Oak Ridge Associated Universities' contract was the result of a 2005 impasse over Department of Health direct gamma radiation measurements at the Station site boundary. Vermont Department of Health measurement results for the fourth quarter of 2004, and for the year 2004 in its entirety, were in excess of the 10 millirem per quarter and 20 millirem per year Department of Health limits. Vermont Yankee held that their measurements and supporting calculations proved otherwise. Oak Ridge Associated Universities completed their assessment and draft final report at the end of January 2007. They concluded that Vermont Yankee had not exceeded the Department of Health quarterly and annual limits in 2004. Oak Ridge Associated Universities went on to recommend many ways that both the Department of Health and Vermont Yankee could improve measurements of direct gamma radiation and the assessment of compliance to the Vermont Department of Health regulations on direct gamma radiation. Some of those recommendations were incorporated in Department of Health methods for 2006; others will be incorporated for 2007 and subsequent years. The 188-page Oak Ridge Associated Universities report is available at the Vermont Department of Health web site at

http://healthvermont.gov/enviro/rad/documents/013107Site%20BoundaryEvaluation.pdf

In addition to providing an assessment of the impacts of Vermont Yankee Nuclear Power Station operations on public health, the samples, measurements and equipment used in the Vermont Department of Health environmental surveillance program help establish baseline values of radioactivity in the region around the Station. These baselines help us recognize measurements outside the expected range, and allow comparisons when conditions warrant them. The surveillance equipment pre-positioned in this region may also be useful in emergency responses. In the event of an unexpected release from the Station, the Department of Health air samplers and thermoluminescent dosimeters may help us determine the extent of human exposure and contamination of our environment.

This report should also depict the extent of capabilities at the Vermont Department of Health Laboratory. Vermonters are served well by the staff and other resources there that allow the Health Department conduct rather rigorous testing. All radiological analyses of the laboratory are subject to high levels of quality control as tested both from within the lab, and by outside organizations.

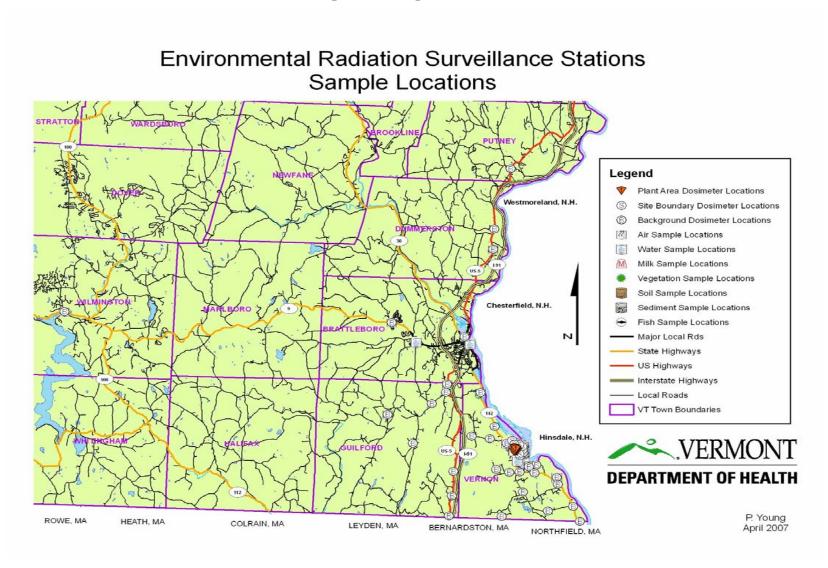
For this year, some changes have been made in the report. These are most evident in the maps, tables and graphs. In addition, the entire report is published at the Vermont

Vermont Department of Health Introduction

Department of Health web site, <u>http://healthvermont.gov</u> Also, new this year, we are publishing the first statistics regarding health outcomes in the vicinity of Vermont Yankee Nuclear Power Station. Should you have questions about the content, please call the Vermont Department of Health Radiological Health Program at 802-865-7730.

Program Results Summary

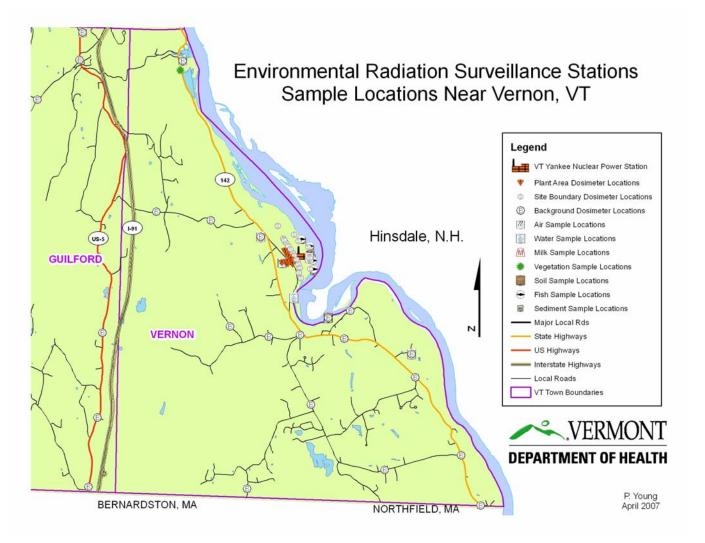
The number of samples and analyses in the Vermont Department of Health environmental surveillance program for the Vermont Yankee Nuclear Power Station is indicative of a significant investment in evaluating compliance to Department of Health regulations and protecting public health. Table 1 indicates the number of sample types, measurement or sample collection locations, samples, analyses and general results for each sample. Maps 1 and 2 display the specific locations of the sampling. More detailed discussion about the sample results comprises the bulk of this report.


With each discussion are tables that show the results and map location identification numbers. Some maps are more easily viewed on the Vermont Department of Health web site, where they can be enlarged. This is especially true of Map 1, where all the sample locations and types are depicted, but the printed version does not show them as clearly as the individual maps for the different sample types later in the report. You can view this report and all of the maps at <u>http://healthvermont.gov/</u>

Vermont Department of Health Program Results Summary

Sample Type	Locations	No.	Analysis Type	Results
		Samples		
Direct Gamma	71	284	Thermoluminescent	Less than limits plus 25%
Radiation			Dosimeters	uncertainty including at site
				boundary bordered by land
Air	9	106	Total Alpha	Within historical range; mean
Particulates,			Radioactivity	results near VYNPS similar to
Gases, Vapors			5	those further from VYNPS
· •	•	106	Total Beta	Within historical range; mean
			Radioactivity	results near VYNPS similar to
				those further from VYNPS
		4	Total Gamma	All detected gamma
			Radioactivity	radioactivity of natural origin
		106	Iodine-131	All samples less than lower
			Radioactivity	limit of detection, 0.02 pCi/m ³
		106	Total Gamma	All detected gamma
			Radioactivity	radioactivity of natural origin
Water	6	118	Total Alpha	Within historical range; mean
			Radioactivity	results near VYNPS similar to
				those further from VYNPS
	·	118	Total Beta	Within historical range; mean
			Radioactivity	results near VYNPS similar to
				those further from VYNPS
		118	Tritium	All samples less than lower
			Radioactivity	limit of detection of 300 pCi/l
		118	Total Gamma	All detected gamma
			Radioactivity	radioactivity of natural origin
Milk	2	24	Iodine-131	All samples less than lower
			Radioactivity	limits of detection, 2.26 pCi/l
		24	Total Gamma	All detected gamma
			Radioactivity	radioactivity of natural origin
Vegetation	5	13	Total Gamma	All detected gamma
			Radioactivity	radioactivity of natural origin
				or Chernobyl and nuclear
				weapons testing
Soil	5	16	Total Gamma	All detected gamma
			Radioactivity	radioactivity of natural origin
				or Chernobyl and nuclear
				weapons testing
River	20	35	Total Gamma	All detected gamma
Sediments			Radioactivity	radioactivity of natural origin
				or Chernobyl and nuclear
				weapons testing
Fish	4	4	Total Gamma	All detected gamma
			Radioactivity	radioactivity of natural origin
Totals	122	1300		

Table 1. Summary of 2006 Samples, Analyses and Results


Map 1. All Samples, All Locations

Vermont Department of Health

Program Results Summary

Map 2. All Samples in Vernon, Vermont

Ionizing Radiation Risks

The radiations to which people may be exposed as a result of Vermont Yankee Nuclear Power Station operations are called ionizing radiations. According to the International Agency for Research on Cancer, ionizing radiation is a known human carcinogen. Cancer may result from exposure to ionizing radiation because the energy absorbed may directly or indirectly damage the DNA of human cells. DNA damage is a general requirement of carcinogenesis.

It has been clearly demonstrated that at high doses, generally in excess of 10 rem or 10,000 millirem (1 rem = 10,000 millirem), people exposed have a higher risk of cancer than people exposed to lower doses. As with other carcinogens, it is impossible to prove that low doses are without risk. With radiation exposure, it is assumed that no dose is without risk. Still, at very low doses such as those reported here, the risk of developing cancer is considered very low, if it exists at all.

The risk management approach used for public health protection with carcinogenic agents is precautionary. In the field of radiation protection, this precautionary approach is called the ALARA principle. Every reasonable effort must be made to maintain exposures and doses *As Low As Reasonably Achievable*. The Vermont Department of Health regulations not only require that exposures to ionizing radiation be less than specific limits, but also that users of ionizing radiation - in all forms of industry, medicine and education - maintain exposures ALARA. More about ionizing radiation risk may be found at these websites:

The National Academies of Science: http://books.nap.edu/openbook.php?isbn=030909156X

The Health Physics Society: <u>http://hps.org/documents/risk_ps010-1.pdf</u>

Vermont Department of Health

Ionizing Radiation Risks

The International Agency for Research on Cancer, their complete series of monographs on carcinogenic agents: <u>http://monographs.iarc.fr/ENG/Monographs/allmonos90.php</u> Beginning with this Surveillance 2006 Report on Public Health Monitoring, the Vermont Department of Health is presenting information about certain health outcomes in the vicinity of Vermont Yankee. While environmental sampling is important in determining compliance with regulations, assessments of the health of people living near the Power Station helps us understand the actual health impacts. Working with the Department of Health Cancer Registry and the Department of Health Vital Records Office, some initial information about the health of people in Windham County and in the six towns nearest Vermont Yankee Nuclear Power Station is being presented.

Considering the primary concern about chronic low level exposure to ionizing radiation is cancer, the first health outcomes being summarized are cancer incidence (new cancer cases diagnosed) and cancer mortality (people dying from cancer). Later reports may present investigations of other health outcomes.

Cancer is, unfortunately, very common. Roughly one out of every two men and one out of every three women will develop cancer in their lifetime.

The source of the information in Table 2 is the Vermont Department of Health Cancer Registry. It was updated as of January 2007. The incidence rates are for all cancers, for invasive thyroid cancers, for leukemia and for childhood cancers for the years 1994 - 2003. More information about cancer rates in Vermont may be found at: http://healthvermont.gov/pubs/cancerpubs/cancer_in_vermont.aspx

The data in Table 2 indicate that, for all cancer types combined, the rate of cancer incidence in the six towns near Vermont Yankee Nuclear Power Station (Brattleboro, Dummerston, Guilford, Halifax, Marlboro and Vernon) is lower as compared to the rest of Vermont and the United States as a whole. No statistical differences are seen in incidence rates for thyroid cancer, leukemia, and childhood cancers among the different geographic areas.

Thyroid cancers and leukemia are of particular interest because increased risk may be associated with excess radiation exposure. There is no evidence of excessive radiation exposure in these geographic areas, but the focus on these kinds of cancers remains useful. Pediatric cancers are important because radiation health effects are generally more likely when individuals are exposed prenatally or at an early age. The embryo or fetus is most radiosensitive. Ionizing Radiation Risks

Vermont and U.S. Cancer Incidence, All Sites, Males and Females, 1994 – 2003 (Urinary Bladder Includes Malignant and In Situ)							
	Rate	Lower CI	Upper CI	Avg cases per year			
U.S White	488.8	487.9	489.8				
Vermont	490.1	484.5	495.7	2,996			
Windham County	472.9	453.6	492.9	227			
VYNPS Nearby Towns	434.2	407.2	462.7	98			

Rates are per 100,000 and age-adjusted to the 2000 U.S. Std Population (18 age groups - Census P25-1130) standard; Confidence intervals (CI) are 95% for rates.

Vermont and U.S. Cancer Incidence, Invasive Thyroid Cancer, Males and Females, 1994 - 2003								
				Avg cases				
	Rate	Lower CI	Upper CI	per year				
U.S White	7.7	7.6	7.8					
Vermont	6.6	6.0	7.3	41				
Windham County	5.4	3.5	8.1	3				
VYNPS Nearby Towns	5.1	2.5	9.4	1				

Rates are per 100,000 and age-adjusted to the 2000 U.S. Std Population (18 age groups - Census P25-1130) standard; Confidence intervals (CI) are 95% for rates.

Vermont and U.S. Cancer Incidence, Leukemia, Males and Females, 1994 - 2003								
	Rate	Lower CI	Upper CI	Avg cases per year				
U.S White	13.4	13.3	13.6					
Vermont	13.0	12.1	13.9	78				
Windham County	12.9	9.9	16.7	6				
VYNPS Nearby Towns	9.1	5.6	14.3	2				

Rates are per 100,000 and age-adjusted to the 2000 U.S. Std Population (18 age groups - Census P25-1130) standard; Confidence intervals (CI) are 95% for rates.

				Avg cases
	Rate	Lower CI	Upper CI	per year
U.S White	17.3	16.9	17.6	
Vermont	16.6	14.7	18.7	28
Windham County	14.7	8.6	23.7	2
VYNPS Nearby Towns	Rates ar	e only presented v	when the number of o	cases is at least 6

In Table 3, mortality rates from cancer in Windham County as a whole and the six towns near Vermont Yankee Nuclear Power Station are presented for the years 1994 - 2003. The data in this table indicate there are no statistical differences in the death rates from malignant neoplasms, leukemia, thyroid cancer and pediatric cancer among the six towns near Vermont Yankee and Windham County as a whole. These data are from the Department's Health Vital Statistics System, last updated in January 2007.

It is important to note that in several cases, cancer incidence and cancer mortality rates in the United States, Vermont, Windham County and the six towns near Vermont Yankee Nuclear Power Station are not statistically different. So characterizations that one population is at more risk or at less risk as compared to another are not valid. It is clear, however, that for the years 1994 – 2003 cancer mortality rates in the towns of Brattleboro, Dummerston, Guilford, Halifax, Marlboro and Vernon are not different than those for Windham County as a whole.

To understand the numbers reported in Tables 2 and 3, examining an example from each table may help. From the first set of numbers at the top of Table 2, you can see that the incidence rate for all cancers in the U.S. white male and female population is about 489 cases per 100,000 persons. Statistically speaking, we are 95 percent confident (not due to chance alone) that this rate exists in the range of 487.9 to 489.9 cases per 100,000 persons. In the six towns near Vermont Yankee, the all cancer incidence rate is 434 cases per 100,000 persons. We are 95 percent confident that the actual rate is between 407.2 cases and 462.7 cases per 100,000 persons. At the reported confidence intervals, these differences are statistically significant. After adjusting for age and population size, people in the six towns near Vermont Yankee Nuclear Power Station were diagnosed with fewer cancers between 1994 and 2003 than Vermont and the U.S.

From the second collection of rates in Table 3, it initially appears that deaths from leukemia in the six towns nearer Vermont Yankee may be higher than in Windham County as a whole. However, this difference is not statistically significant. In Windham

Vermont Department of Health Ionizing Radiation Risks

County, the death rate from leukemia was 7.60 deaths per 100,000 persons, while the death rate from leukemia in the six towns near Vermont Yankee was 8.33 deaths per 100,000 persons. We are 95 percent confident that these rates fall between 5.31 and 10.77 deaths per 100,000 persons in Windham County, and between 4.98 and 13.56 deaths per 100,000 persons in the six towns. With these confidence intervals, as they are called, the two leukemia death rates are not statistically different.

One other caution about the use of these data: the numbers of cancer cases and the number of cancer deaths in the six towns near Vermont Yankee are small. Making predictions for larger populations is better done with larger numbers of cases, which may be recorded over longer periods of time. This is an objective at the Vermont Department of Health – to annually update these figures to help reconcile the differences between perceived risks for developing cancer and the actual experience of cancer diagnoses in the community.

Table 3. Cancer Mortality Rates in Windham County and Towns Near VYNPS

Counts of Deaths and Age-Adjusted Mortality Rates for Selected Cancers, 1994-2003

ALL AGES	Malignant	Neoplasm	s (all sites)
	# Deaths	Rates(1)	95% CI
Brattleboro, Dummerston, Guilford	505	217.52	(198.77, 237.98)
Halifax, Marlboro, Vernon			
Windham County	1019	210.62	(197.85, 224.20)
	.		
ALL AGES	Leukemia		
	# Deaths	Rates(1)	95% CI
Brattleboro, Dummerston, Guilford	19	8.33	(4.98, 13.56)
Halifax, Marlboro, Vernon			
Windham County	36	7.60	(5.31, 10.77)
ALL AGES	Thyroid C	lancer	
	# Deaths	Rates(1)	95% CI
Brattleboro, Dummerston, Guilford	*	0.44	(0.00, 3.22)
Halifax, Marlboro, Vernon			
Windham County	*	0.70	(0.14, 2.34)

AGES 0-19	Malignant	Malignant Neoplasms (all sites)							
	# Deaths	95% CI							
Brattleboro, Dummerston, Guilford Halifax, Marlboro, Vernon	*	2.18	(0.00, 15.87)						
Windham County	*	3.40	(0.83, 10.20)						

Rates are per 100,000 persons

(1) Rates are age-adjusted to US 2000 Standard Population

* Less than 5 deaths reported.

Source: VT Department of Health Vital Statistics System

Surveillance Methods

The types of surveys and analyses performed by the Department of Health deserve some description relative to their role in protecting public health.

Direct Gamma Radiation

The Vermont Department of Health currently uses thermoluminescent dosimeters (TLDs) to monitor direct gamma radiation. Direct gamma radiation is the energy emanating from the Vermont Yankee Nuclear Power Station systems and components. Direct gamma radiation is not a contaminant that collects on surfaces like particles, gases or vapors released from a facility might. Direct gamma radiation is energy that the body is affected by only when a person is located in an area where gamma radiation exists. Everyone is continuously exposed to direct gamma radiation from natural and human-made sources.

Department of Health thermoluminescent dosimeters are installed all the way around the Vermont Yankee site fence line, along its site boundary and in the publicly occupied spaces around the station to identify the amount of public exposure that may be associated with operations at the Station. Additional Department of Health thermoluminescent dosimeters are installed throughout the towns of Vernon and Guilford, and in locations in Brattleboro, Dummerston, Putney and Wilmington to establish what the background levels of direct gamma radiation are, in the absence of the Vermont Yankee Nuclear Power Station.

The gamma radiation measured by the Department of Health thermoluminescent dosimeters is an electromagnetic wave similar to X-rays. Gamma radiation passes through your skin and may pass through your entire body. The radiation delivers ionizing radiation dose to the tissues with which it interacts.

With a thermoluminescent dosimeter, the gamma radiation interacts with and changes the physical composition of the materials in the thermoluminescent dosimeter. When the

thermoluminescent dosimeter is removed from its monitoring location and sent to a laboratory for analysis, the physical changes in the thermoluminescent dosimeter are reversed. When this occurs, light is emitted, and the amount of light measured in the process is directly proportional to the amount of ionizing radiation energy absorbed in the thermoluminescent dosimeter. This is considered representative of the dose a person would receive at the specific location if that person remained in that location 24 hours a day every day of the monitoring period.

Typical gamma radiation emitting radioactive materials include the potassium-40 inside our own bodies, the beryllium-7 in most earthen materials and the nitrogen-16 in reactor coolant water at a nuclear power plant. Other important reactor-generated gamma radiation emitters include the solids cobalt-60 and cesium-137, the vapor iodine-131 and the gases krypton-88 and xenon-133.

Personnel thermoluminescent dosimeters, like those worn by workers in nuclear power plants and in medical and research facilities, are calibrated to provide a measure of biological dose for the wearer. Dose is the amount of an agent to which you are exposed that actually affects you. The dose is recorded in units called millirem.

On the other hand, environmental thermoluminescent dosimeters, including those reported on in this document, are not calibrated to provide direct measures of dose in millirem. Environmental thermoluminescent dosimeters are only calibrated to provide a measure of exposure. These thermoluminescent dosimeter exposures are recorded in milliroentgen. Historically, the Vermont Department of Health has considered the amount of radiation exposure measured in milliroentgen to be equal to the amount of biological dose equivalent in millirem. Both personnel and environmental thermoluminescent dosimeters are used to measure beta and gamma radiation exposure.

The remaining sample types are used to determine the amount of radioactivity, or radioactive contamination, in the media being sampled. Identifying the quantities and

Vermont Department of Health Surveillance Methods

types of radioactive materials in the environment helps us predict how much may end up in our bodies from the air we breathe and in the water and food we eat.

Air Monitoring

The Vermont Department of Health uses continuously operating air samplers to monitor the air near Vermont Yankee Nuclear Power Station in Vernon, as well as air in the nearby towns of Guilford, Brattleboro, Dummerston and Wilmington. The air samples allow us to evaluate the amount of three different kinds of radiation to which people may be exposed in the air they breathe. These are alpha, beta and gamma radiation.

Alpha and beta radiation are similar to gamma radiation in that the health risk associated with each is carcinogenesis from damage to DNA. Alpha and beta radiation differ from gamma radiation because they are particle forms of radiation energy, and gamma radiation is an electromagnetic wave of energy. While electromagnetic waves like gamma radiation travel great distances and through most materials, particle radiations like alpha and beta radiation travel relatively short distances and are completely stopped by simple materials.

Alpha particle radiation is the most biologically hazardous form of ionizing radiation. For equal amounts of alpha, beta and gamma radiation energy, alpha particle radiation may cause roughly 20 times more tissue damage. Radon gas and its radioactive decay daughter products emit alpha, beta and gamma radiation. It is the alpha radiation that leads to so much concern about lung cancer.

Fortunately, alpha radiation cannot penetrate the simplest of materials. For example, a sheet of paper can completely stop an alpha particle, as can the dead layer of skin that covers the outer surface of the skin of our bodies. Thus, the only way alpha particles may actually harm us is if radioactive material that emits alpha radiation is inhaled, ingested or otherwise taken into the body.

Most alpha-emitting radioactive materials are heavy metals like human-made americium-241 and plutonium-239 or naturally-occurring uranium-234 or thorium-232. Radon-222 is unusual because it is a radioactive gas. It is this characteristic that also adds to our exposures to, and risks from, radon. Radon gas seeps from the earth's crust and accumulates in buildings and other structures, unlike solids like uranium and thorium that are trapped in soil and rock.

Beta particle radiations also have predictable ranges through materials and are stopped by simple materials. Most beta particle radiations are stopped by plastics and simple construction materials. The dead layer of skin on the outside of our bodies is not always capable of protecting the living skin beneath it. Most beta particle radiation can cause skin dose.

Still, beta particles do not penetrate the living skin more than a few millimeters, so our internal organs are only affected by beta particle radiation if we inhale or ingest beta particle emitting radioactive materials. Once taken into the body, and like alpha particle radiation, the beta particle radiation may damage the tissues of our internal organs. This is why monitoring of the air, water and food chain is so important in an environmental surveillance program.

Materials that emit beta particle radiation include the naturally-occurring carbon-14 in all living things, as well as hydrogen-3 (also known as tritium), which may be both humanmade or of natural origin. Strontium-90 is a beta particle radiation emitting radioactive material. It is a product of the fission process that may be found in nuclear reactor coolant water.

Radioactive materials that emit alpha, beta or gamma radiation behave chemically just like non-radioactive materials. For example, radioactive hydrogen in water goes everywhere water (a compound of two atoms of hydrogen and one atom of oxygen) goes in our bodies, radioactive iodine goes to the thyroid gland like non-radioactive iodine does, and radioactive strontium goes to the bone just like non-radioactive strontium does.

Alpha and beta particle radiation in radioactive materials in the air is determined by drawing air through a glass fiber filter. Radioactive materials are trapped on the filter and the filter is counted on a gas flow proportional counter in the Vermont Department of Health Laboratory. All radiological analyses of the laboratory are subject to high levels of quality control as tested both from within the lab, and by outside organizations.

Gamma radiation is also monitored in the air samples the Vermont Department of Health takes each month. Specifically, a charcoal cartridge is positioned in the air sampler immediately downstream from the glass fiber filter described above. While the glass fiber filter traps particulate forms of radioactive materials, the charcoal cartridge traps molecules of gas and vapors. One particular radioactive material of interest existing in a vaporous form especially likely to be trapped by the charcoal cartridge is iodine-131.

Iodine-131 is a vapor at temperatures above room temperature. It is created during the fission of nuclear reactor fuel. Leaks in fuel rod cladding allow the iodine-131 into the reactor coolant, the water that runs through the reactor core, and other plant components and systems. The iodine-131 vapor may be trapped by plant ventilation system charcoal beds, but some may also be released from the plant stack. Iodine-131 is not generally found in the environment except where used in medicine and produced by nuclear facilities.

Iodine-131 that is inhaled, like other isotopes of iodine that may also be released, travels through the bloodstream to the thyroid gland in a person's neck. That which is not taken up by the thyroid gland is soon excreted from the body with other waste fluids. If a person's thyroid gland is saturated with iodine, most of the iodine-131 taken into the body passes straight from the bloodstream to the urine for elimination. This is the benefit afforded to those who take potassium iodide. If one takes a sufficient dose of potassium

iodide, about 130 milligrams (mg) for an adult and 65 mg for children between the ages of 3 and 18, radioactive iodine-131 will not be taken up into the thyroid, and risks of thyroid cancer will be reduced significantly.

More about potassium iodide availability and use around the Vermont Yankee Nuclear Power Station may be found at: <u>http://healthvermont.gov/enviro/rad/KI_program.aspx</u>

In addition to analyzing the charcoal cartridges for radioactive iodine-131, both the charcoal cartridges and the air filters are analyzed for most other gamma radiation emitting radioactive materials. Hence, the Vermont Department of Health looks for nearly every radioactive material that may be emitted from the Vermont Yankee Nuclear Power Station and found in air.

Gamma radiation is analyzed by gamma spectroscopy. Gamma spectroscopy relies on the unique energy signatures of radioactive materials that emit gamma radiation. These unique gamma radiation energies are analyzed to identify the specific radioactive materials in the sample. Gamma spectroscopy can also determine the amount of radioactivity in the sample by measuring the amount of gamma radiation energy emitted by the sample. Gamma spectroscopy is performed by the Vermont Department of Health Laboratory under relatively ideal conditions.

Water Monitoring

Groundwater and surface water around the Vermont Yankee Nuclear Power Station is monitored with methods similar to those for air. Water is collected from wells that supply water to two Vernon farms and to the Vernon Elementary School. Samples are also taken from the Brattleboro municipal water supply. Surface water is sampled from the Connecticut River near the plant discharge, downstream of Vernon Dam and in Brattleboro. Water monitoring results are presented below. Vermont Department of Health Surveillance Methods

Water samples are collected monthly by the Vermont Department of Health and by an environmental monitoring contractor. All of the samples are analyzed by the Vermont Department of Health Laboratory through various methods. The Vermont Department of Health Laboratory analyzes all water samples for total alpha radioactivity and total beta radioactivity. It also analyzes for all gamma radiation-emitting radioactive materials through gamma spectroscopy. Finally, all of these water samples are analyzed specifically for tritium (hydrogen-3).

Monitoring of the Inputs to the Food Chain

Given that direct gamma radiation that may contribute to public ionizing radiation dose is monitored, and that radioactive materials in the air we breathe and in the water we drink are measured, the remaining pathway for public exposure from Vermont Yankee Nuclear Power Station is the food we consume. To evaluate the food chain and inputs to it, the Vermont Department of Health takes samples from the soil within which plants grow and obtain nutrients and water, from sediments that support fish and other aquatic species in waterways, from wild and cultivated vegetation, from fish, and from cow's raw milk.

Every soil, sediment, vegetation, fish and milk sample is evaluated for gamma radiation emitting radioactive materials, while raw cow's milk is also specifically analyzed for iodine-131.

Direct Gamma Radiation Results

Direct gamma radiation is what we call the electromagnetic energy that is emitted from the reactor and turbine systems at Vermont Yankee Nuclear Power Station. Like light from a bulb, this energy is emitted in all directions from certain station components and operations. Like light, this direct gamma radiation is reduced in intensity with increasing distance. Also like light, it scatters and reflects off of nearby materials. Some direct gamma radiation actually reflects from the atmosphere above the station back to earth. This is called skyshine.

The Vermont Department of Health direct gamma radiation measurements also account for any gamma radiation exposures from gases, vapors and particles in the air. This includes gamma radiation exposures from gases like krypton-88 and xenon-133 that might be released from the Vermont Yankee Nuclear Power Station plant stack, as well as particulates and vapors, including radioactive iodine. These exposures are likely very small, especially as compared to the direct gamma radiation and scattered and skyshine radiation from plant components, systems and operations.

Direct gamma radiation can contribute to public exposures outside the site boundary of the station. The Vermont Department of Health limits direct gamma radiation doses for members of the public. The limit is expressed in millirem, a unit that accounts for both the amount of radiation energy absorbed and the potential biological effects of that radiation energy absorption. The unit millirem quantifies what is called the biological health dose equivalent. The Vermont Department of Health regulations for radiological health can be found at http://healthvermont.gov/regs/radio_health.pdf

The biological dose equivalent allowed annually for a member of the general public from direct gamma radiation emitted from Vermont Yankee Nuclear Power Station is limited to 5 millirem. Because it is impossible to verify that the biological dose equivalent to every single person exposed throughout the year is less than 5 millirem, the regulations

provide for measurements of the site boundary dose as an acceptable alternative for verifying compliance. This makes sense, since measurements of the actual dose at a location along the site boundary may be readily obtained. Specifically, the regulations limit the calculated biological dose equivalent at the site boundary to 20 millirem per year. There is a further, separate limit of no more than 10 millirem per calendar quarter.

It is important to note that the Vermont Department of Health regulations for site boundary direct gamma radiation dose pertain only to that portion of the site boundary bordered by land. thermoluminescent dosimeter locations DR42, DR43, DR44, DR45, DR46 and DR47 in Table 5 below are on the site boundary along the Connecticut River. Also note that the thermoluminescent dosimeter results in Tables 5, 6 and 7 below are in units of milliroentgen. The unit milliroentgen (mR) is a unit of exposure, and environmental thermoluminescent dosimeters only record exposure.

When evaluating compliance to Vermont Department of Health regulations, measurements of exposure are taken. These measurements record exposures in units of milliroentgen (mR). This is true whether we are evaluating compliance with the use of medical X-rays or whether we are evaluating compliance at Vermont Yankee Nuclear Power Station.

Biological dose equivalent, measured in millirem, accounts for the amount of ionizing radiation exposure that actually leads to biological dose. In reality, the biological dose equivalent that results from a given exposure to gamma radiation is not equal to the exposure in milliroentgen (mR). This is like heat. You may be exposed to 110 degrees of thermal energy, but your tissues do not all warm to 110 degrees. In the Vermont Department of Health regulations, however, biological dose equivalents in millirem are defined to be equal to the exposures in milliroentgen (mR).

Three methods may generally be used to determine the direct gamma radiation exposures at the site boundary. The first is by using instruments that add up the total radiation

Direct Gamma Radiation Results

exposure over some extended time interval like a calendar quarter or a year. This method results in exposures in units of milliroentgen (mR). The Vermont Department of Health thermoluminescent dosimeters (TLDs) are exposed at the site boundary for a calendar quarter and the total dose for that timeframe is determined. Summing the measurements for the four calendar quarters allows comparison to the annual limit.

The second method uses instruments that indicate the exposure rate at a given time. This results in exposure rates in units of milliroentgen per hour. If you multiply the milliroentgen per hour times the number of hours in a calendar quarter or year, you can compare the result to the Vermont Department of Health limits. A survey meter measures the exposure rate in milliroentgen per hour. One type of accurate survey meter is an ion chamber. The Department of Health has recorded site boundary doses this way over the years, but has not generally used those measurements to determine compliance. The Department also uses ion chambers to evaluate compliance to limits for users of x-rays in medical and industrial facilities. Staff at the Vermont Yankee Nuclear Power Station use ion chambers to measure site boundary dose, in addition to using thermoluminescent dosimeters.

A third method is to use characteristics of the source of exposure and values for distance, time and other aspects of the situation to calculate the quarterly or annual exposure. The Vermont Department of Health has done this frequently over the years too, but generally, not for determining compliance to limits at the Vermont Yankee Nuclear Power Station site boundary. For example, the Vermont Department of Health may calculate possible doses from samples of radioactivity found in the environment or in work places.

In this surveillance report, we present direct gamma radiation doses using only thermoluminescent dosimeters. Past reports have only presented thermoluminescent dosimeter, or other dosimeter, results. Future reports will present the results from thermoluminescent dosimeters, ion chambers and calculations.

Vermont Department of Health Direct Gamma Radiation Results

To determine the direct gamma radiation exposure attributable only to Vermont Yankee Nuclear Power Station, background radiation must be subtracted from measurements. The 71 thermoluminescent dosimeters the Vermont Department of Health deploys in its environmental surveillance program record what are called gross measurements. Gross measurements of gamma radiation include exposures from all natural and man-made sources of radiation where the thermoluminescent dosimeter is physically located.

Gross gamma radiation measurements include exposures from radon gas in the air; from naturally-occurring radioactive materials in the soil, water and vegetation; from radioactive materials in building materials; from contaminants deposited as a result of above-ground nuclear weapons testing; from passing vehicles containing radioactive materials; from people who have varying amounts of natural and human-made radioactive materials within their bodies, and from the direct and scattered gamma radiation from the systems, components and operations at Vermont Yankee Nuclear Power Station.

For thermoluminescent dosimeter measurements, the Vermont Department of Health uses the results of thermoluminescent dosimeter measurements at 34 locations unlikely to be affected by Vermont Yankee Nuclear Power Station. These 34 thermoluminescent dosimeters are located as far west as Wilmington, as far north as Putney, and as far south as the Vermont/Massachusetts state line in Guilford and Vernon.

Beginning this year, each quarter's average (or mean) dose to these 34 thermoluminescent dosimeters is calculated to estimate background radiation. Past determinations of background gamma radiation were from the mean of two thermoluminescent dosimeter stations, one in Putney and one Wilmington. This change from the past was implemented because the calculated mean background is more accurate when 34 measurements are used than when only two measurements are used to calculate the mean. The mean background exposures are reported in Table 4.

Direct Gamma Radiation Results

The exposures reported in Tables 5, 6 and 7 for comparison to the annual limit are the net thermoluminescent dosimeter results – the gross thermoluminescent dosimeter reading minus the mean background radiation.

Background gamma radiation levels for the four quarters of 2006 are presented in summary in Table 4 at the 95 percent confidence level. These results, as well as the complete results in Tables 5, 6 and 7, are provided in units of gamma radiation exposure, milliroentgen (mR), for technical accuracy.

Calendar Quarter	Mean Background and Error at the 95% Confidence Level
January 1 to March 31	18.3 mR <u>+</u> 2.5 mR
April 1 to June 30	20.3 mR <u>+</u> 3.1 mR
July 1 to September 30	21.4 mR <u>+</u> 3.2 mR
October 1 to December 31	22.0 mR <u>+</u> 3.1 mR
Calendar Year 2006	82.1 mR <u>+</u> 6.0 mR

Table 4. 2006 Mean Direct Gamma Radiation Background

These quarterly background levels provide an important context for interpretation of the direct gamma radiation levels and limits. The sum of these mean quarterly direct gamma radiation background levels is 82.1 mR. The Vermont Department of Health limit for direct gamma radiation, 20 millirems per year, is approximately one-fourth the direct gamma radiation dose people receive from natural background radiation, excluding the doses received from radon gas and its daughter products. Another thing these results point out is the effect of uncertainty. The uncertainty of each quarterly background exposure measurement is between 14 and 16 percent of the measurement.

All dosimeter measurements over time, and survey meter measurements at a given time, are estimates. They are best estimates, but these measurements are subject to error or uncertainty. It is appropriate when reporting measurements, then, to also report the amount of uncertainty. Uncertainty results from variability in what is being measured, in the measurement devices, and in the persons doing the measurements. The uncertainty in what is being measured – radioactivity - may be accounted for statistically; the uncertainty in measurement instruments can be determined readily in a laboratory; the uncertainty in human performance during measurement, can be reasonably estimated.

Uncertainty can be minimized, too. For example, the amount of uncertainty in the background measurements the Vermont Department of Health uses is greater when two dosimeters are used to calculate the mean background, as compared to when the mean

background is calculated from 34 background thermoluminescent dosimeter measurements. Generally, the greater the number in the sample size, the more accurate statistics like the mean and standard deviation will be. The same is true of time. The longer you collect measurements, the more likely it is that the measurement accurately characterizes the condition. For example, it may be better to characterize background radiation using 10 years worth of measurements than to use the measurements for a threemonth calendar quarter.

In the three tables below are the results of Vermont Department of Health thermoluminescent dosimeter measurements of direct gamma radiation at the Vermont Yankee Nuclear Power Station site boundary (Table 5), in the immediate area around the station (Table 6) and, to establish a background radiation level, in parts of Windham County distant from the station (Table 7).

Table 5 lists the results for 2006 for what we call the site boundary. It must be noted, that in 12 locations the thermoluminescent dosimeter is on the fence that surrounds the station, but not actually at the site boundary. These 12 fenceline dosimeters, DR-53, VY Parking Lot, VY Parking Lot #2, DR-51, DR-07, DR-49, T01, T02, T03, T04, T05 and T06 are all located more than 350 feet closer to the station's sources of direct gamma radiation than the actual site boundary.

Because the fenceline was originally more coincident with the actual site boundary, the fenceline has been used to assess compliance to the Vermont Department of Health limits for direct gamma radiation. This may be appropriate, too, because the land between the fence line and the actual site boundary (primarily open fields and some limited patches of trees) is not restricted from public access.

From Table 5, there are two dosimeters that measured direct gamma radiation exposure in excess of the 20 millirem per year limit, given the regulation-defined equivalence of milliroentgen (mR) of exposure and millirem of biological dose equivalent. These

dosimeters are VY Parking Lot at 21.6 + 1.7 mR and VY Parking Lot #2 at 20.3 + 1.5 mR. Both dosimeters are at the same location on the Vermont Yankee Nuclear Power Station fenceline. Like all the other results in Tables 5 6 and 7 below, these values were arrived at using the mean exposure from the 34 background dosimeters in Table 7. Also, the error for the annual results is the total propagated error at the 95 percent confidence level.

Since the early 1970s, the Department of Health has informed the operators of Vermont Yankee, as well as elected and staff members of Vermont State government, that a possible 25 percent error in site boundary direct gamma radiation measurements of dose was accounted for by allowing annual doses of 20 millirem + 5 millirem. Since the 2006 site boundary direct gamma radiation levels measured by the Department of Health were less than 25 millirem, the Department does not deem the direct gamma radiation levels at the Vermont Yankee Nuclear Power Station to be out of compliance with its regulations for the year 2006.

Note also that numerous site boundary dose measurements for 2006 are incomplete. In mid-February 2006, the Department of Health added 29 more thermoluminescent dosimeters to its deployment of dosimeters on the fenceline and on the actual site boundary.

Maps 3, 4, 5 and 6 depict the physical locations of the site boundary, plant area and background dosimeters, respectively. The ID numbers on the maps may be matched to the locations in Tables 5, 6 and 7.

Location	Map	QTR1	Error	QTR 2	Error	QTR 3	Error	QTR 4	Error	2006	Error
Site Boundary Dosimeters	ID No.	Net mR	mR								
VDH T01*	26	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	1.1
VDH T02*	27	0.0	2.3	0.7	0.0	0.0	1.1	1.3	1.1	2.0	2.7
VDH T03*	28	0.0	1.1	1.0	1.1	0.0	0.0	2.3	2.3	3.3	2.8
VDH T04*	29	0.0	0.0	1.3	1.1	0.0	1.1	1.0	2.0	2.3	2.5
VDH T05*	30	0.0	5.7	1.7	0.0	2.2	3.0	1.0	2.0	4.9	6.2
VDH T06*	31	0.0	1.1	3.7	2.0	0.6	0.0	4.6	2.3	8.9	3.2
VDH DR07*	14	0.0	1.1	2.3	1.1	1.2	1.1	3.0	2.0	6.5	2.7
VDH DR08*	15	0.0	1.1	4.3	1.1	3.2	1.1	4.6	1.1	12.2	2.2
VDH DR41*	16	0.0	0.0	1.2	1.4	0.0	1.1	1.3	2.3	2.5	2.9
VY Southwest Fence	36	0.1	1.1	1.0	2.3	0.0	0.0	0.0	1.1	1.1	2.8
VY Southwest Fence #2	37	0.0	1.1	0.7	2.0	0.0	0.0	0.0	1.1	0.7	2.5
VDH DR42*	17	0.0	0.0	0.3	1.1	1.2	1.1	0.3	1.1	1.9	1.9
VDH DR43*	18	0.0	0.0	2.2	1.4	0.0	1.1	2.3	1.1	4.5	2.1
VDH DR44*	19	0.0	1.1	4.0	1.1	4.9	4.1	4.6	1.1	13.5	2.8
VDH DR45*	12	5.4	3.0	11.0	1.1	9.2	2.3	14.0	2.0	39.6	4.0
VDH DR46*	13	0.0	2.0	5.7	2.0	3.6	2.0	5.6	1.1	14.9	3.3
VDH DR47*	20	0.0	1.1	1.7	0.0	1.6	2.0	3.0	2.0	6.2	2.7
VDH DR48*	21	0.0	1.1	1.0	1.1	0.0	1.1	1.3	1.1	2.3	2.2
VY North Fence	32	0.2	1.4	2.7	0.0	0.2	1.1	1.0	0.0	4.1	1.7
VY North Fence #2	33	0.0	0.0	3.0	1.1	0.0	1.1	2.0	0.0	5.0	1.6
VDH DR49*	22	0.0	1.1	0.0	1.1	0.0	3.0	0.0	1.1	0.0	2.6
VDH DR51*	23	0.0	0.0	4.3	1.1	2.6	0.0	5.3	1.1	12.2	1.6
VDH DR52*	24	0.0	1.1	5.7	0.0	4.2	2.3	6.6	1.1	16.5	2.2
VY Parking Lot	34	5.4	1.1	8.0	2.3	3.6	2.0	4.6	1.1	21.6	3.1
VY Parking Lot #2	11	4.4	1.1	5.7	0.0	3.9	1.1	6.3	2.3	20.3	2.7
VDH DR53*	25	0.0	1.1	7.3	1.1	4.6	0.0	6.6	1.1	18.5	2.0
*Installed Mid-February											

Table 5. 2006 Net VYNPS Site Boundary TLD Results for 2006

Vermont Department of Health Direct Gamma Radiation Results

Map 3

Environmental Radiation Surveillance Stations Site Boundary Dosimeter Locations

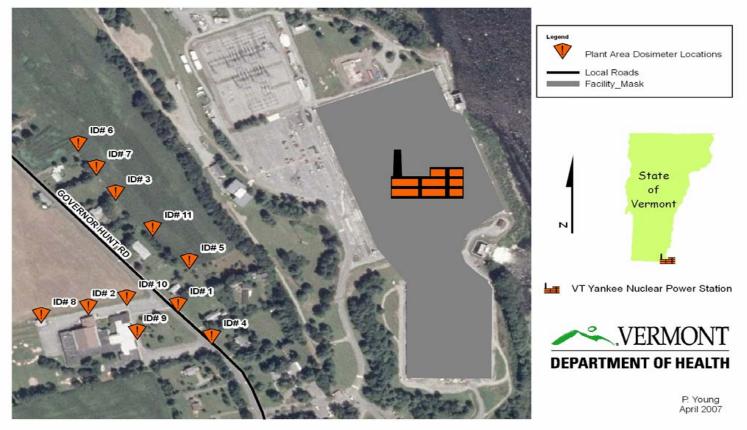
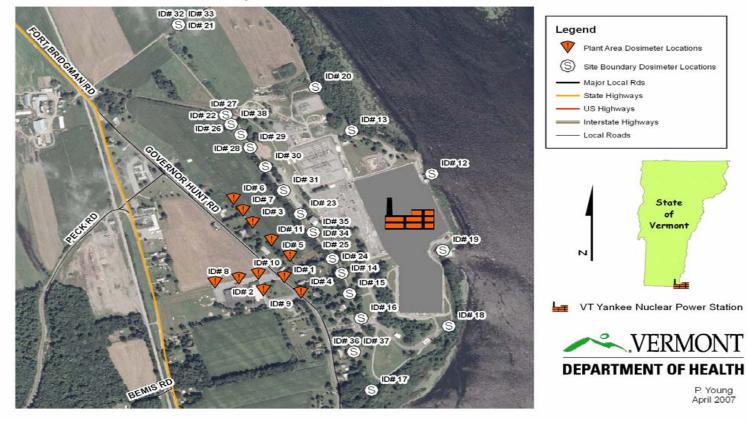

	Map	QTR 1		QTR 2		QTR 3		QTR 4		<mark>2006</mark>	
Location	ID	Net	Error	Net	Error	Net	Error	Net	Error	Net	Error
Plant Area Dosimeters	No.	mR	mR								
VDH T07A*	6	0.0	0.0	2.7	2.0	1.6	2.0	1.6	1.1	5.9	2.7
VDH T07B*	7	0.0	2.0	2.3	3.0	4.9	2.3	2.3	1.1	9.5	4.0
VDH DR51A*	3	0.0	1.1	3.3	1.1	4.6	0.0	2.3	1.1	10.2	2.0
VY PARKING LOT A*	11	0.0	1.1	4.3	1.1	4.9	1.1	3.0	2.0	12.2	2.7
VDH DR53A*	5	0.0	1.1	3.7	2.0	6.6	0.0	4.0	0.0	14.2	2.3
Gov Hunt Road # 39*	1	1.4	1.1	3.0	1.1	1.9	1.1	2.0	2.0	8.3	2.7
Vernon School Nurse's Office	9	4.1	1.1	2.3	1.1	2.2	1.1	3.3	1.1	11.9	2.2
VDH DR06*	2	0.0	0.0	0.7	0.0	0.0	1.1	0.0	2.3	0.7	2.5
Vernon School Air Station	8	0.0	0.0	0.0	1.1	1.9	1.1	0.0	1.1	1.9	1.9
VDH DR52A*	4	1.4	1.1	1.7	0.0	0.9	1.1	1.3	1.1	5.3	1.9
Vernon School Pole	10	0.0	1.1	3.2	1.4	3.9	2.3	3.0	2.0	10.0	3.1
*Installed Mid-February											

Table 6. 2006 VYNPS Plant Area TLD Results

Surveillance 2006

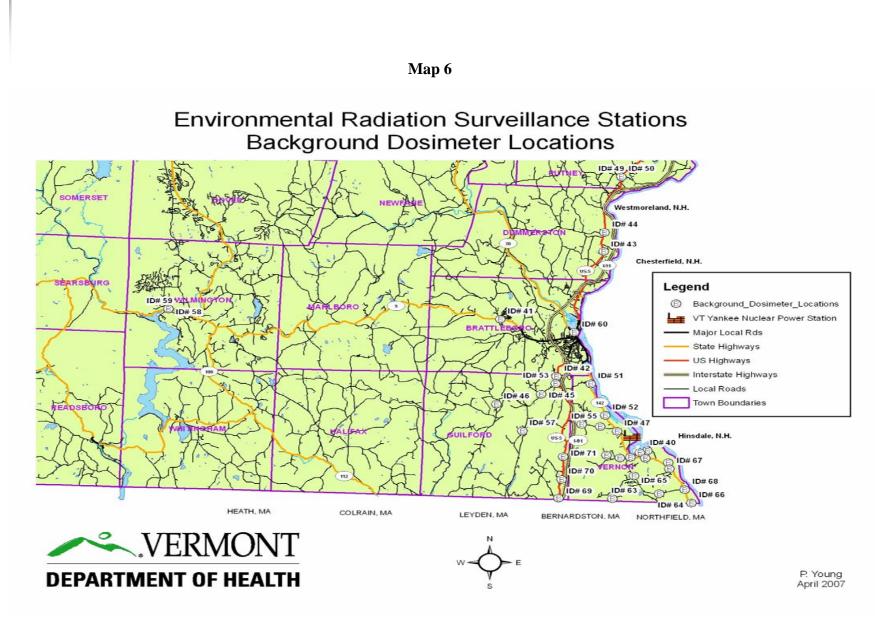

Map 4

Environmental Radiation Surveillance Stations Plant Area Dosimeter Locations

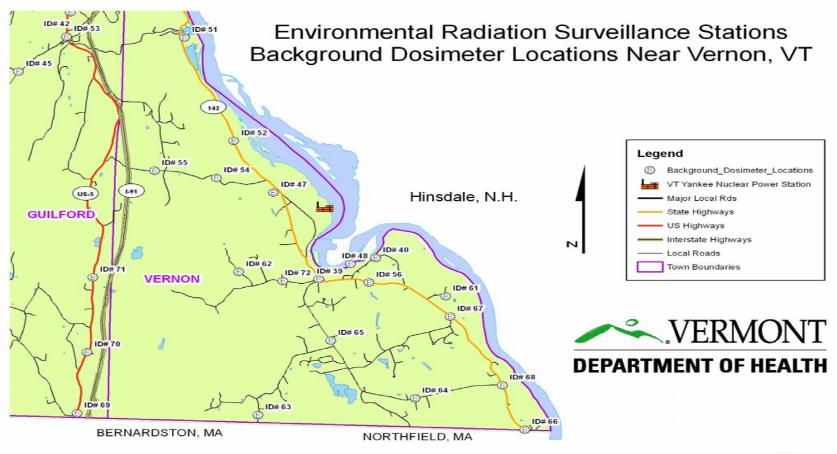
Map 5

VT Yankee Nuclear Power Station Site Boundary and Plant Area Dosimeter Locations

Location	Map	QTR 1	Error	QTR 2	Error	QTR 3	Error	QTR 4	Error	2006	Error
Background Dosimeters	ID No.	Net mR	Net mR	Net mR	mR	Net mR	mR	Net mR	mR	Net mR	mR
Putney Town Clerk's Office	50	0.1	1.1	0.0	1.1	0.0	1.1	0.0	1.1	0.1	2.2
Putney Pole	49	0.4	1.1	1.3	1.1	0.0	0.0	1.3	1.1	3.0	2.0
Dummerston School	44	1.1	1.1	0.2	1.4	0.9	1.1	1.0	2.0	3.1	2.9
Dummerston IFO	43	0.4	1.1	0.0	1.1	1.9	1.1	0.6	2.3	2.9	3.0
Windham County Court	60	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	1.1
Renaud Brothers	51	0.1	1.1	1.7	2.0	0.0	1.4	0.0	2.0	1.7	3.2
Rt 142 North of Trans Lines	52	0.7	2.0	0.3	1.1	0.0	1.1	0.6	1.1	1.7	2.7
Tyler Hill Road	54	0.0	1.1	1.7	3.4	0.0	1.1	0.6	1.1	2.3	3.9
Miller Farm	47	0.0	1.1	0.0	0.0	0.6	0.0	0.0	1.1	0.6	1.6
142 & Pond Road North	39	1.1	2.3	0.0	0.0	0.0	3.0	0.6	3.0	1.7	4.1
Fairman Road	62	0.0	1.1	1.0	1.1	1.6	2.0	0.0	2.0	2.6	2.9
West Road & Edgewood	72	0.0	0.0	0.0	1.1	0.6	2.0	0.0	1.1	0.6	2.1
Vernon Fire Station	56	3.4	4.5	1.3	1.1	2.2	2.3	0.3	1.1	7.3	5.0
Power Line River Crossing	48	0.4	1.1	0.3	2.3	1.6	0.0	0.3	1.1	2.6	2.8
A&M/Smead, Stebbins Rd	40	0.1	1.1	0.0	1.1	1.6	0.0	0.0	2.3	1.6	2.8
Blodgett Farm	61	0.0	1.1	1.7	0.0	0.0	2.0	0.6	1.1	2.3	2.1
Rt 142 & Newtron Rd	67	0.0	2.0	0.0	1.1	0.0	1.1	0.0	1.1	0.0	2.7
Rt 142 & Pond Rd South	68	1.1	1.1	0.3	1.1	0.0	0.0	0.0	2.0	1.4	2.5
Rt 142 & Depot Street	66	0.0	1.1	0.3	1.1	0.6	0.0	0.3	1.1	1.2	2.0
Pond Rd & Houghton	64	0.0	2.3	0.0	1.1	0.2	1.1	0.6	1.1	0.9	3.0
Pond Rd at Vernon Recreation	65	0.0	2.0	0.0	2.0	0.0	1.1	0.0	1.1	0.0	3.2
Huckle Hill Rd.VT Line	63	2.1	2.3	2.7	2.0	2.1	1.4	3.6	2.3	10.4	3.9
Route 5 & Wolosko Rd	69	1.7	2.0	1.2	1.4	3.9	1.1	1.0	0.0	7.8	2.6
Rt 5 & Andrews Cemetary	70	0.0	0.0	0.7	0.0	1.9	2.3	0.0	2.0	2.6	2.5


Table 7. 2006 VYNPS Background TLD Results

Location	Map	QTR 1	Error	QTR 2	Error	QTR 3	Error	QTR 4	Error	2006	Error
Background Dosimeters	ID No.	Net mR	Net mR	Net mR	mR	Net mR	mR	Net mR	mR	Net mR	mR
Rt 5 & Tkaczyk Farm Rd	71	0.0	1.1	0.7	0.0	1.6	0.0	0.3	1.1	2.5	1.6
Tyler Rd & Franklin Rd	55	0.1	1.1	0.7	2.0	0.0	1.1	3.6	1.1	4.4	2.7
D&E Tree, Rt 5, Guilford	42	0.0	1.1	0.0	1.1	0.0	2.0	0.0	2.0	0.0	2.9
Rt 5 & Guilford Ctr Rd	53	0.0	1.1	1.3	1.1	0.9	1.1	1.3	1.1	3.5	2.2
Guilford Ctr Rd & Tater Rd	45	0.0	1.1	0.0	1.1	0.0	0.0	1.0	2.0	1.0	2.5
Weatherhead Hollow Rd	57	0.0	2.0	0.0	1.1	0.0	1.1	0.0	2.0	0.0	3.2
Guilford Town Garage	46	1.4	2.3	0.3	1.1	0.9	1.1	2.0	0.0	4.6	2.7
West Brattleboro SP	41	0.0	0.0	0.0	1.1	0.0	1.1	0.0	1.1	0.0	1.9
Wilmington AOT Pole	58	0.4	1.1	0.3	1.1	0.0	1.1	0.0	0.0	0.7	1.9
Wilmington AOT Air Station	59	2.4	1.1	1.7	2.0	0.0	1.1	0.0	1.1	4.1	2.7


Table 7. 2006 VYNPS Background TLD Results (continued)

Vermont Department of Health

Direct Gamma Radiation Results

Map 7

P. Young April 2007

Surveillance 2006

Air Sampling Results

Using nine air sampling stations, the Vermont Department of Health assesses radioactivity in the air around Vermont Yankee. The locations of the air samplers are shown on Map 8 below. The ID numbers on the map may be matched with those on Tables 8, 9, 10 and 11. The sampling apparatus uses a mechanical pump to pull environmental air through sample media. Between the pump and sample media is positioned an in-line flow meter. The flow meter tracks the volume of air drawn through the sample media. The air samplers run continuously, and the air samples collected there are changed at least monthly.

The air samplers use two different sample media to capture airborne radioactivity. One is a glass fiber filter. This filter collects particulate material. The air filter is analyzed by the Vermont Department of Health Laboratory in Burlington, which reports the results as total alpha radioactivity and total beta radioactivity. Alpha radioactivity is a measure of radioactive materials that emit alpha radiation, while beta radioactivity is a measure of radioactive materials that emit beta radiation. The air filters are also counted for gamma radioactivity in what are called the quarterly composites. An example of a natural radioactive particulate is beryllium-7. A radioactive particulate only associated with human activity is cesium-137.

The second media is a charcoal cartridge treated with triethylenediamine (TEDA). This cartridge has an affinity for radioactive iodine. As air passes through the cartridge, radioactive iodine gets trapped in the charcoal cartridge. The radioactive iodine is measured at the Vermont Department of Health Laboratory. In addition, other radioactive gases and vapors may be trapped in the charcoal cartridge. These, too, are analyzed by the laboratory. A radioactive iodine of particular interest is iodine-131. The lab reports the iodine-131 radioactivity, and identifies any other radioactive gases or vapors that are collected on the cartridge after performing gamma spectroscopy.

Alpha and beta radioactivity on the glass fiber filters is measured using a gas flow proportional counter. The charcoal cartridges are analyzed for radioactive iodine and other radioactive materials with a gamma spectrometer system using a reverse electrode germanium detector. The instruments used at the Vermont Department of Health Laboratory are very sensitive and subject to significant quality controls. Still, each instrument has a limit of detection. When a sample is analyzed and no radioactivity is detected, the result is not recorded as zero, but it is recorded as less than the lower limit of detection. The lower limit of detection for iodine-131 is 0.02 pCi/m3

Total alpha, total beta, and iodine-131 radioactivity is reported in picocuries per cubic meter. A picocurie (pCi) is a measure of radioactivity. One pCi is one trillionth of a curie, and one curie is the amount of radioactivity in one gram of radium-226. A cubic meter (m3) is a measure of volume, so the number of pCi/m3 in these air samples is a measure of the airborne radioactivity concentration. Table 8 presents the total alpha radioactivity from the 2006 air sample filters. Table 9 presents the total beta radioactivity from these filters. Table 10 presents the radioactive iodine-131 results following analysis of the charcoal cartridge samples, while Table 11 presents the gamma spectrometry results for the analysis of these charcoal cartridges.

Results for 2006 are that 1) alpha radioactivity is within the historical range of less than the lower limits of detection to 0.0071 pCi/m^3 at 0.000038 pCi/m^3 to 0.00516 pCi/m^3 ; 2) that beta radioactivity is very close to within the historical range of less than the lower limits of detection to 0.0251 pCi/m^3 at 0.000137 pCi/m^3 to 0.026 pCi/m^3 ; 3) that iodine-131 samples were all less than the limit of detection; and 4) that all gamma radioactivity detected was of natural origin.

Each calendar quarter, the air filter samples from all nine air sample locations are analyzed together in what is called a quarterly composite. The quarterly composite corrects for radioactive decay over the calendar quarter. The filters are analyzed with the gamma spectrometer system used to evaluate the air cartridges for radioactive materials. Table 12 presents the quarterly composite results.

In the graph in Figure 1, the mean alpha radioactivity for each of the nine Vermont Department of Health air sample stations is plotted. The graph indicates that there is little difference between results at locations close to Vermont Yankee Nuclear Power Station, for example at the Vernon Elementary School, and at locations far from the plant.

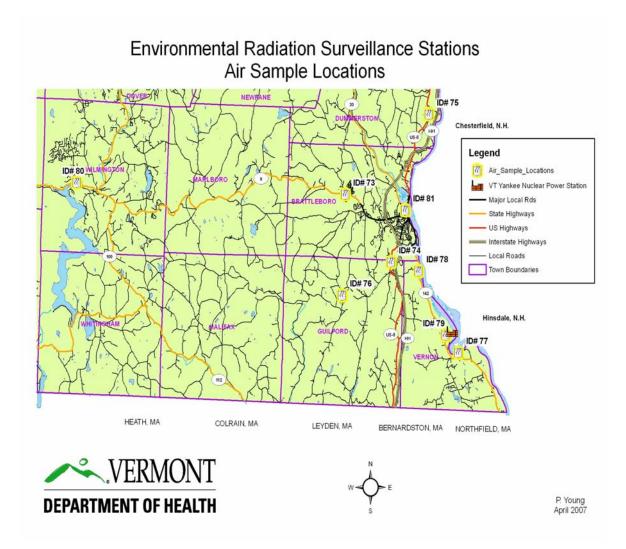

As with alpha radioactivity, a look at the mean air sample total beta radioactivity indicates no significant difference between air sample results for locations near the plant as compared to locations further from the plant. These mean air sample results from the nine air sample stations are plotted in the graph in Figure 2.

Table 10 presents the monthly results of iodine-131 sample analysis. No iodine-131 above the lower limit of detection was identified at any of the nine air sampling stations. The lower limit of detection is 0.02 picocuries per cubic meter (pCi/m^3).

In Table 11 is presented the gamma spectroscopy results for air sample charcoal cartridges for the nine air samplers in the Vermont Yankee Nuclear Power Station area. All of the results indicate only naturally occurring radioactive materials were detected. Table 13 provides a list of some of the naturally occurring radioactive materials commonly found in gamma spectroscopy at the Vermont Department of Health Laboratory. Table 14 is a list of radioactive materials that may be identified through gamma spectroscopy that are predominantly associated with nuclear facilities.

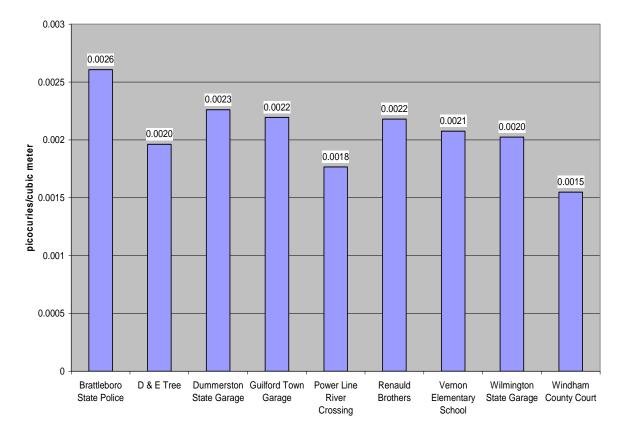
Table 12 presents the quarterly air sample composite analysis. The quarterly composites are analyses of all air filters collected from the nine air sampling stations over the threemonth calendar quarter. The 27 filters are analyzed by gamma spectroscopy, which can identify any radioactivity that emits gamma radiation. The analysis of these filters indicated only naturally occurring beryllium-7 present in excess of the lower limit of detection. Beryllium-7 is a cosmogenic radioactive material. Cosmogenic radioactive materials are created by cosmic radiation interactions in the earth's atmosphere. The beryllium-7 accumulates on the surface of the earth when washed out of the atmosphere by precipitation.

Sample	Sample	Map	Results	Error	Sample
Date	Location	ID No.	pCi/m ³	pCi/m ³	Comment
1/23/2006	Brattleboro State Police	73	0.00366	0.0008	
1/23/2006	D&E Tree, Guilford	74	0.0025	0.00066	
1/23/2006	Dummerston State Garage	75	0.00351	0.00079	
1/23/2006	Guilford Town Garage	76	0.00516	0.00102	
1/23/2006	Power Line River Crossing	77	0.00382	0.00083	
1/23/2006	Renauld Brothers	78	0.00344	0.0008	
1/23/2006	Vernon Elementary School	79	0.00306	0.00074	
1/23/2006	Wilmington State Garage	80	0.00299	0.00071	
1/23/2006	Windham County Court	81	0.00311	0.00077	
2/21/2006	Brattleboro State Police	73	0.00311	0.00082	
2/21/2006	D&E Tree, Guilford	74	0.000358	0.000353	
2/21/2006	Dummerston State Garage	75	0.00294	0.0008	
2/21/2006	Guilford Town Garage	76	0.00379	0.00098	
2/21/2006	Power Line River Crossing	77	0.00293	0.0008	
2/21/2006	Renauld Brothers	78	0.0039	0.00093	
2/21/2006	Vernon Elementary School	79	0.00288	0.00079	
2/21/2006	Wilmington State Garage	80	0.00227	0.00069	
2/21/2006	Windham County Court	81	0.0025	0.00075	
3/24/2006	Brattleboro State Police	73	0.00269	0.00073	
3/24/2006	D&E Tree, Guilford	74	0.00316	0.00081	
3/24/2006	Dummerston State Garage	75	0.00263	0.00073	
3/24/2006	Guilford Town Garage	76	0.00336	0.00088	
3/24/2006	Power Line River Crossing	77	0.000648	0.000398	
3/24/2006	Renauld Brothers	78	0.00337	0.00083	
3/24/2006	Vernon Elementary School	79	0.00328	0.00081	
3/24/2006	Wilmington State Garage	80	0.00229	0.00066	
3/24/2006	Windham County Court	81	0.000585	0.000375	
4/18/2006	Brattleboro State Police	73	0.00275	0.00079	
4/18/2006	D&E Tree, Guilford	74	0.0026	0.00079	
4/18/2006	Dummerston State Garage	75	0.00397	0.00095	
4/18/2006	Guilford Town Garage	76	0.00297	0.00088	
4/18/2006	Power Line River Crossing	77	0.00272	0.0008	
4/18/2006	Renauld Brothers	78	0.00206	0.0007	
4/18/2006	Vernon Elementary School	79	0.00303	0.00083	
4/18/2006	Wilmington State Garage	80	0.002	0.00067	
4/18/2006	Windham County Court	81	0.00264	0.00079	

Table 8. 2006 Air Sample Alpha Radioactivity

Sample	Sample	Мар	Results	Error	Sample
Date	Location	ID No.	pCi/m ³	pCi/m ³	Comment
5/16/2006	Brattleboro State Police	73	0.00102	0.00065	
5/16/2006	D&E Tree, Guilford	74	0.000957	0.000669	
5/16/2006	Dummerston State Garage	75	0.00129	0.0007	
5/16/2006	Guilford Town Garage	76	0.00141	0.00077	
5/16/2006	Power Line River Crossing	77	0.00162	0.00076	
5/16/2006	Renauld Brothers	78	0.00176	0.00096	
5/16/2006	Vernon Elementary School	79	0.00159	0.00074	
5/16/2006	Wilmington State Garage	80	0.00204	0.00076	
5/16/2006	Windham County Court	81	0.00114	0.00068	
6/19/2006	Brattleboro State Police	73	0.0014	0.00058	
6/19/2006	D&E Tree, Guilford	74	0.0019	0.00067	
6/19/2006	Dummerston State Garage	75	0.00143	0.00059	
6/19/2006	Guilford Town Garage	76	0.00189	0.00068	
6/19/2006	Power Line River Crossing	77	0.000038	0.000326	
6/19/2006	Renauld Brothers	78	0.00138	0.00067	
6/19/2006	Vernon Elementary School	79	0.00193	0.00066	
6/19/2006	Wilmington State Garage	80	0.00155	0.00059	
6/19/2006	Windham County Court	81	0.000038	0.000322	
7/28/2006	Brattleboro State Police	73	0.00314	0.00077	
7/28/2006	D&E Tree, Guilford	74	0.00242	0.00069	
7/28/2006	Dummerston State Garage	75	0.00254	0.0007	
7/28/2006	Guilford Town Garage	76	0.000742	0.000478	
7/28/2006	Power Line River Crossing	77	0.00278	0.00073	
7/28/2006	Renauld Brothers	78	0.00211	0.00074	
7/28/2006	Vernon Elementary School	79	0.0016	0.00059	
7/28/2006	Wilmington State Garage	80	0.000143	0.000303	
7/28/2006	Windham County Court	81	0.00209	0.00065	
8/30/2006	Brattleboro State Police	73	N/A	N/A	Electrical Failure
8/30/2006	D&E Tree, Guilford	74	0.00281	0.00081	
8/30/2006	Dummerston State Garage	75	0.00199	0.0007	
8/30/2006	Guilford Town Garage	76	0.000721	0.00054	
8/30/2006	Power Line River Crossing	77	0.00256	0.00077	
8/30/2006	Renauld Brothers	78	0.000703	0.000527	
8/30/2006	Vernon Elementary School	79	0.0019	0.00069	
8/30/2006	Wilmington State Garage	80	0.00275	0.00075	
8/30/2006	Windham County Court	81	0.000177	0.000382	

Table 8. 2006 Air Sample Alpha Radioactivity (continued)


Table 8. 2006 Air Sample Alpha	Radioactivity (continued)
--------------------------------	---------------------------

Sample	Sample	Мар	Results	Error	Sample
Date	Location	ID No.	pCi/m ³	pCi/m ³	Comment
9/27/2006	Brattleboro State Police	73	N/A	N/A	Electrical Failure
9/27/2006	D&E Tree, Guilford	74	0.00105	0.00057	
9/27/2006	Dummerston State Garage	75	0.00141	0.00063	
9/27/2006	Guilford Town Garage	76	0.00107	0.00062	
9/27/2006	Power Line River Crossing	77	0.00169	0.00068	
9/27/2006	Renauld Brothers	78	0.00111	0.00062	
9/27/2006	Vernon Elementary School	79	0.00109	0.00057	
9/27/2006	Wilmington State Garage	80	0.0013	0.00057	
9/27/2006	Windham County Court	81	0.0022	0.00074	
10/26/2006	Brattleboro State Police	73	0.0021	0.00073	
10/26/2006	D&E Tree, Guilford	74	0.00174	0.00069	
10/26/2006	Dummerston State Garage	75	0.00149	0.00066	
10/26/2006	Guilford Town Garage	76	0.000199	0.000515	
10/26/2006	Power Line River Crossing	77	0.000772	0.000535	
10/26/2006	Renauld Brothers	78	0.000066	0.000363	
10/26/2006	Vernon Elementary School	79	0.00173	0.00068	
10/26/2006	Wilmington State Garage	80	0.00181	0.00065	
10/26/2006	Windham County Court	81	0.000057	0.000312	
11/22/2006	Brattleboro State Police	73	0.00248	0.00078	
11/22/2006	D&E Tree, Guilford	74	0.0019	0.00071	
11/22/2006	Dummerston State Garage	75	0.00206	0.00073	
11/22/2006	Guilford Town Garage	76	0.0000968	0.000635	
11/22/2006	Power Line River Crossing	77	0.000666	0.000494	
11/22/2006	Renauld Brothers	78	0.00111	0.00061	
11/22/2006	Vernon Elementary School	79	0.00116	0.0006	
11/22/2006	Wilmington State Garage	80	0.00183	0.00065	
11/22/2006	Windham County Court	81	N/A	N/A	
12/21/2006	Brattleboro State Police	73	0.00372	0.00092	
12/21/2006	D&E Tree, Guilford	74	0.00215	0.00075	
12/21/2006	Dummerston State Garage	75	0.00186	0.00071	
12/21/2006	Guilford Town Garage	76	0.00492	0.00112	
12/21/2006	Power Line River Crossing	77	0.000943	0.000551	
12/21/2006	Renauld Brothers	78	0.00515	0.00118	
12/21/2006	Vernon Elementary School	79	0.00165	0.00066	
12/21/2006	Wilmington State Garage	80	0.00331	0.00083	
12/21/2006	Windham County Court	81	0.00249	0.00053	

Vermont Department of Health

Air Sampling Results

Figure 1

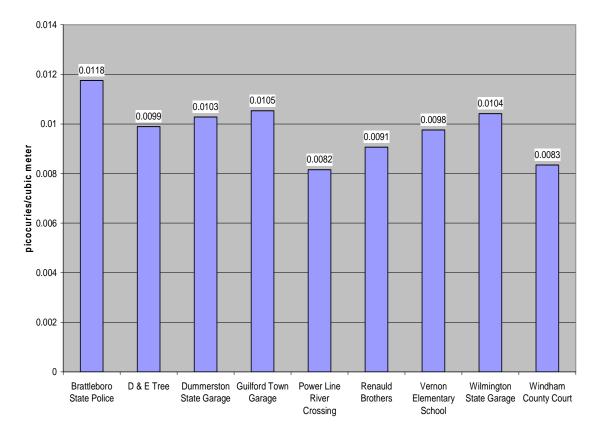
Average Air Sample Alpha Radioactivity 2006

Sample	Sample	Map	Results	Error	Sample
Date	Location	ID No.	pCi/m ³	pCi/m ³	Comment
1/23/2006	Brattleboro State Police	73	0.0162	0.0013	
1/23/2006	D&E Tree, Guilford	74	0.0159	0.0013	
1/23/2006	Dummerston State Garage	75	0.018	0.0014	
1/23/2006	Guilford Town Garage	76	0.0222	0.0017	
1/23/2006	Power Line River Crossing	77	0.0179	0.0014	
1/23/2006	Renauld Brothers	78	0.0162	0.0014	
1/23/2006	Vernon Elementary School	79	0.0151	0.0013	
1/23/2006	Wilmington State Garage	80	0.0162	0.0013	
1/23/2006	Windham County Court	81	0.0181	0.0014	
2/21/2006	Brattleboro State Police	73	0.0129	0.0013	
2/21/2006	D&E Tree, Guilford	74	0.00243	0.00068	
2/21/2006	Dummerston State Garage	75	0.0138	0.0014	
2/21/2006	Guilford Town Garage	76	0.0186	0.0017	
2/21/2006	Power Line River Crossing	77	0.015	0.0014	
2/21/2006	Renauld Brothers	78	0.0139	0.0014	
2/21/2006	Vernon Elementary School	79	0.0152	0.0014	
2/21/2006	Wilmington State Garage	80	0.0127	0.0013	
2/21/2006	Windham County Court	81	0.0145	0.0014	
3/24/2006	Brattleboro State Police	73	0.013	0.0013	
3/24/2006	D&E Tree, Guilford	74	0.0133	0.0013	
3/24/2006	Dummerston State Garage	75	0.012	0.0012	
3/24/2006	Guilford Town Garage	76	0.0154	0.0015	
3/24/2006	Power Line River Crossing	77	0.00199	0.00064	
3/24/2006	Renauld Brothers	78	0.012	0.0012	
3/24/2006	Vernon Elementary School	79	0.0131	0.0013	
3/24/2006	Wilmington State Garage	80	0.0112	0.0012	
3/24/2006	Windham County Court	81	0.00141	0.00057	
4/18/2006	Brattleboro State Police	73	0.0132	0.0015	
4/18/2006	D&E Tree, Guilford	74	0.0118	0.0015	
4/18/2006	Dummerston State Garage	75	0.0135	0.0015	
4/18/2006	Guilford Town Garage	76	0.015	0.0017	
4/18/2006	Power Line River Crossing	77	0.013	0.0015	
4/18/2006	Renauld Brothers	78	0.0117	0.0014	
4/18/2006	Vernon Elementary School	79	0.0129	0.0015	
4/18/2006	Wilmington State Garage	80	0.011	0.0013	
4/18/2006	Windham County Court	81	0.0129	0.0015	

Table 9. 2006 Air Sample Beta Radioactivity Results

Sample	Sample	Мар	Results	Error	Sample
Date	Location	ID No.	pCi/m ³	pCi/m ³	Comment
5/16/2006	Brattleboro State Police	73	0.00807	0.0012	
5/16/2006	D&E Tree, Guilford	74	0.00784	0.00123	
5/16/2006	Dummerston State Garage	75	0.00763	0.00119	
5/16/2006	Guilford Town Garage	76	0.00891	0.00133	
5/16/2006	Power Line River Crossing	77	0.00808	0.00122	
5/16/2006	Renauld Brothers	78	0.011	0.0016	
5/16/2006	Vernon Elementary School	79	0.00831	0.00122	
5/16/2006	Wilmington State Garage	80	0.00801	0.00115	
5/16/2006	Windham County Court	81	0.00768	0.00119	
6/19/2006	Brattleboro State Police	73	0.00817	0.00104	
6/19/2006	D&E Tree, Guilford	74	0.00712	0.00101	
6/19/2006	Dummerston State Garage	75	0.008	0.00104	
6/19/2006	Guilford Town Garage	76	0.00757	0.00106	
6/19/2006	Power Line River Crossing	77	0.000457	0.000546	
6/19/2006	Renauld Brothers	78	0.00635	0.00109	
6/19/2006	Vernon Elementary School	79	0.0086	0.00107	
6/19/2006	Wilmington State Garage	80	0.00795	0.001	
6/19/2006	Windham County Court	81	0.000345	0.000529	
7/28/2006	Brattleboro State Police	73	0.00891	0.0001	
7/28/2006	D&E Tree, Guilford	74	0.012	0.0012	
7/28/2006	Dummerston State Garage	75	0.0103	0.0011	
7/28/2006	Guilford Town Garage	76	0.00198	0.000662	
7/28/2006	Power Line River Crossing	77	0.0117	0.0011	
7/28/2006	Renauld Brothers	78	0.00533	0.00097	
7/28/2006	Vernon Elementary School	79	0.00696	0.00093	
7/28/2006	Wilmington State Garage	80	0.000489	0.000453	
7/28/2006	Windham County Court	81	0.00883	0.00102	
8/30/2006	Brattleboro State Police	73	N/A	N/A	Electrical Failure
8/30/2006	D&E Tree, Guilford	74	0.0113	0.0013	
8/30/2006	Dummerston State Garage	75	0.00774	0.00108	
8/30/2006	Guilford Town Garage	76	0.00309	0.00086	
8/30/2006	Power Line River Crossing	77	0.0115	0.0013	
8/30/2006	Renauld Brothers	78	0.0035	0.00087	
8/30/2006	Vernon Elementary School	79	0.00823	0.0011	
8/30/2006	Wilmington State Garage	80	0.0108	0.0011	
8/30/2006	Windham County Court	81	0.000433	0.00058	

Table 9. 2006 Air Sample Beta Radioactivity Results (continued)


Table 9. 2006 Air Sample Beta Radioactivity Results (continued)

Sample	Sample	Map	Results	Error	Sample
Date	Location	ID No.	pCi/m ³	pCi/m ³	Comment
9/27/2006	Brattleboro State Police	73	N/A	N/A	Electrical Failure
9/27/2006	D&E Tree, Guilford	74	0.00785	0.00112	
9/27/2006	Dummerston State Garage	75	0.00628	0.00103	
9/27/2006	Guilford Town Garage	76	0.00354	0.00092	
9/27/2006	Power Line River Crossing	77	0.00543	0.00098	
9/27/2006	Renauld Brothers	78	0.00202	0.00078	
9/27/2006	Vernon Elementary School	79	0.00603	0.00101	
9/27/2006	Wilmington State Garage	80	0.00815	0.00106	
9/27/2006	Windham County Court	81	0.011	0.0013	
10/26/2006	Brattleboro State Police	73	0.00881	0.00112	
10/26/2006	D&E Tree, Guilford	74	0.00818	0.00112	
10/26/2006	Dummerston State Garage	75	0.00682	0.00105	
10/26/2006	Guilford Town Garage	76	0.00399	0.00104	
10/26/2006	Power Line River Crossing	77	0.00387	0.00086	
10/26/2006	Renauld Brothers	78	0.000329	0.000597	
10/26/2006	Vernon Elementary School	79	0.00827	0.0011	
10/26/2006	Wilmington State Garage	80	0.0095	0.0011	
10/26/2006	Windham County Court	81	0.000532	0.000539	
11/22/2006	Brattleboro State Police	73	0.0115	0.0013	
11/22/2006	D&E Tree, Guilford	74	0.00866	0.00123	
11/22/2006	Dummerston State Garage	75	0.00862	0.00122	
11/22/2006	Guilford Town Garage	76	0.000137	0.001223	
11/22/2006	Power Line River Crossing	77	0.00336	0.00092	
11/22/2006	Renauld Brothers	78	0.00383	0.00099	
11/22/2006	Vernon Elementary School	79	0.00484	0.00102	
11/22/2006	Wilmington State Garage	80	0.0101	0.0012	
11/22/2006	Windham County Court	81	N/A	N/A	
12/21/2006	Brattleboro State Police	73	0.0168	0.0015	
12/21/2006	D&E Tree, Guilford	74	0.0123	0.0014	
12/21/2006	Dummerston State Garage	75	0.0107	0.0013	
12/21/2006	Guilford Town Garage	76	0.026	0.002	
12/21/2006	Power Line River Crossing	77	0.00555	0.001	
12/21/2006	Renauld Brothers	78	0.0226	0.0019	
12/21/2006	Vernon Elementary School	79	0.00957	0.00121	
12/21/2006	Wilmington State Garage	80	0.0189	0.0015	
12/21/2006	Windham County Court	81	0.0161	0.001	

Vermont Department of Health

Air Sampling Results

Figure 2

Air Sample Total Beta Radioactivity 2006

Sample	Sample	Мар	Results	Sample
Date	Location	ID No.	pCi/m ³	Comment
1/23/2006	Brattleboro State Police	73	< 0.02	
1/23/2006	D&E Tree, Guilford	74	< 0.02	
1/23/2006	Dummerston State Garage	75	< 0.02	
1/23/2006	Guilford Town Garage	76	< 0.02	
1/23/2006	Power Line River Crossing	77	< 0.02	
1/23/2006	Renauld Brothers	78	< 0.02	
1/23/2006	Vernon Elementary School	79	< 0.02	
1/23/2006	Wilmington State Garage	80	< 0.02	
1/23/2006	Windham County Court	81	< 0.02	
2/21/2006	Brattleboro State Police	73	< 0.02	
2/21/2006	D&E Tree, Guilford	74	< 0.02	
2/21/2006	Dummerston State Garage	75	< 0.02	
2/21/2006	Guilford Town Garage	76	< 0.02	
2/21/2006	Power Line River Crossing	77	< 0.02	
2/21/2006	Renauld Brothers	78	< 0.02	
2/21/2006	Vernon Elementary School	79	< 0.02	
2/21/2006	Wilmington State Garage	80	< 0.02	
2/21/2006	Windham County Court	81	< 0.02	
3/23/2006	Brattleboro State Police	73	< 0.02	
3/23/2006	D&E Tree, Guilford	74	< 0.02	
3/23/2006	Dummerston State Garage	75	< 0.02	
3/23/2006	Guilford Town Garage	76	< 0.02	
3/23/2006	Power Line River Crossing	77	< 0.02	
3/23/2006	Renauld Brothers	78	< 0.02	
3/23/2006	Vernon Elementary School	79	< 0.02	
3/23/2006	Wilmington State Garage	80	< 0.02	
3/23/2006	Windham County Court	81	< 0.02	
4/18/2006	Brattleboro State Police	73	< 0.02	
4/18/2006	D&E Tree, Guilford	74	< 0.02	
4/18/2006	Dummerston State Garage	75	< 0.02	
4/18/2006	Guilford Town Garage	76	< 0.02	
4/18/2006	Power Line River Crossing	77	< 0.02	
4/18/2006	Renauld Brothers	78	< 0.02	
4/18/2006	Vernon Elementary School	79	< 0.02	
4/18/2006	Wilmington State Garage	80	< 0.02	
4/18/2006	Windham County Court	81	< 0.02	

Table 10. 2006 Air Sample Radioactive Iodine-131 Results

Sample	Sample	Мар	Results	Sample
Date	Location	ID No.	pCi/m ³	Comment
5/16/2006	Brattleboro State Police	73	< 0.02	
5/16/2006	D&E Tree, Guilford	74	< 0.02	
5/16/2006	Dummerston State Garage	75	< 0.02	
5/16/2006	Guilford Town Garage	76	< 0.02	
5/16/2006	Power Line River Crossing	77	< 0.02	
5/16/2006	Renauld Brothers	78	< 0.02	
5/16/2006	Vernon Elementary School	79	< 0.02	
5/16/2006	Wilmington State Garage	80	< 0.02	
5/16/2006	Windham County Court	81	< 0.02	
6/19/2006	Brattleboro State Police	73	< 0.02	
6/19/2006	D&E Tree, Guilford	74	< 0.02	
6/19/2006	Dummerston State Garage	75	< 0.02	
6/19/2006	Guilford Town Garage	76	< 0.02	
6/19/2006	Power Line River Crossing	77	< 0.02	
6/19/2006	Renauld Brothers	78	< 0.02	
6/19/2006	Vernon Elementary School	79	< 0.02	
6/19/2006	Wilmington State Garage	80	< 0.02	
6/19/2006	Windham County Court	81	< 0.02	
7/28/2006	Brattleboro State Police	73	< 0.02	
7/28/2006	D&E Tree, Guilford	74	< 0.02	
7/28/2006	Dummerston State Garage	75	< 0.02	
7/28/2006	Guilford Town Garage	76	< 0.02	
7/28/2006	Power Line River Crossing	77	< 0.02	
7/28/2006	Renauld Brothers	78	< 0.02	
7/28/2006	Vernon Elementary School	79	< 0.02	
7/28/2006	Wilmington State Garage	80	< 0.02	
7/28/2006	Windham County Court	81	< 0.02	
8/30/2006	Brattleboro State Police	73	N/A	Electrical Failure
8/30/2006	D&E Tree, Guilford	74	< 0.02	
8/30/2006	Dummerston State Garage	75	< 0.02	
8/30/2006	Guilford Town Garage	76	< 0.02	
8/30/2006	Power Line River Crossing	77	< 0.02	
8/30/2006	Renauld Brothers	78	< 0.02	
8/30/2006	Vernon Elementary School	79	< 0.02	
8/30/2006	Wilmington State Garage	80	< 0.02	
8/30/2006	Windham County Court	81	< 0.02	

Table 10. 2006 Air Sample Radioactive Iodine-131 Results (continued)

Sample	Sample	Мар	Results	Sample
Date	Location	ID No.	pCi/m ³	Comment
9/27/2006	Brattleboro State Police	73	N/A	Electrical Failure
9/27/2006	D&E Tree, Guilford	74	< 0.02	
9/27/2006	Dummerston State Garage	75	< 0.02	
9/27/2006	Guilford Town Garage	76	< 0.02	
9/27/2006	Power Line River Crossing	77	< 0.02	
9/27/2006	Renauld Brothers	78	< 0.02	
9/27/2006	Vernon Elementary School	79	< 0.02	
9/27/2006	Wilmington State Garage	80	< 0.02	
9/27/2006	Windham County Court	81	< 0.02	
10/26/2006	Brattleboro State Police	73	< 0.02	
10/26/2006	D&E Tree, Guilford	74	< 0.02	
10/26/2006	Dummerston State Garage	75	< 0.02	
10/26/2006	Guilford Town Garage	76	< 0.02	
10/26/2006	Power Line River Crossing	77	< 0.02	
10/26/2006	Renauld Brothers	78	< 0.02	
10/26/2006	Vernon Elementary School	79	< 0.02	
10/26/2006	Wilmington State Garage	80	< 0.02	
10/26/2006	Windham County Court	81	< 0.02	
11/22/2006	Brattleboro State Police	73	< 0.02	
11/22/2006	D&E Tree, Guilford	74	< 0.02	
11/22/2006	Dummerston State Garage	75	< 0.02	
11/22/2006	Guilford Town Garage	76	< 0.02	
11/22/2006	Power Line River Crossing	77	< 0.02	
11/22/2006	Renauld Brothers	78	< 0.02	
11/22/2006	Vernon Elementary School	79	< 0.02	
11/22/2006	Wilmington State Garage	80	< 0.02	
11/22/2006	Windham County Court	81	< 0.02	
12/21/2006	Brattleboro State Police	73	< 0.02	
12/21/2006	D&E Tree, Guilford	74	< 0.02	
12/21/2006	Dummerston State Garage	75	< 0.02	
12/21/2006	Guilford Town Garage	76	< 0.02	
12/21/2006	Power Line River Crossing	77	< 0.02	
12/21/2006	Renauld Brothers	78	< 0.02	
12/21/2006	Vernon Elementary School	79	< 0.02	
12/21/2006	Wilmington State Garage	80	< 0.02	
12/21/2006	Windham County Court	81	< 0.02	

Sample	Sample	Мар	Results	Sample
Date	Location	ID No.	pCi/m ³	Comment
1/23/2006	Brattleboro State Police	73	Natural	
1/23/2006	D&E Tree, Guilford	74	Natural	
1/23/2006	Dummerston State Garage	75	Natural	
1/23/2006	Guilford Town Garage	76	Natural	
1/23/2006	Power Line River Crossing	77	Natural	
1/23/2006	Renauld Brothers	78	Natural	
1/23/2006	Vernon Elementary School	79	Natural	
1/23/2006	Wilmington State Garage	80	Natural	
1/23/2006	Windham County Court	81	Natural	
2/21/2006	Brattleboro State Police	73	Natural	
2/21/2006	D&E Tree, Guilford	74	Natural	
2/21/2006	Dummerston State Garage	75	Natural	
2/21/2006	Guilford Town Garage	76	Natural	
2/21/2006	Power Line River Crossing	77	Natural	
2/21/2006	Renauld Brothers	78	Natural	
2/21/2006	Vernon Elementary School	79	Natural	
2/21/2006	Wilmington State Garage	80	Natural	
2/21/2006	Windham County Court	81	Natural	
3/23/2006	Brattleboro State Police	73	Natural	
3/23/2006	D&E Tree, Guilford	74	Natural	
3/23/2006	Dummerston State Garage	75	Natural	
3/23/2006	Guilford Town Garage	76	Natural	
3/23/2006	Power Line River Crossing	77	Natural	
3/23/2006	Renauld Brothers	78	Natural	
3/23/2006	Vernon Elementary School	79	Natural	
3/23/2006	Wilmington State Garage	80	Natural	
3/23/2006	Windham County Court	81	Natural	
4/18/2006	Brattleboro State Police	73	Natural	
4/18/2006	D&E Tree, Guilford	74	Natural	
4/18/2006	Dummerston State Garage	75	Natural	
4/18/2006	Guilford Town Garage	76	Natural	
4/18/2006	Power Line River Crossing	77	Natural	
4/18/2006	Renauld Brothers	78	Natural	
4/18/2006	Vernon Elementary School	79	Natural	
4/18/2006	Wilmington State Garage	80	Natural	
4/18/2006	Windham County Court	81	Natural	

Table 11. 2006 Air Sample Gamma Radioactivity Results

Sample	Sample	Мар	Results	Sample
Date	Location	ID No.	pCi/m ³	Comment
5/16/2006	Brattleboro State Police	73	Natural	
5/16/2006	D&E Tree, Guilford	74	Natural	
5/16/2006	Dummerston State Garage	75	Natural	
5/16/2006	Guilford Town Garage	76	Natural	
5/16/2006	Power Line River Crossing	77	Natural	
5/16/2006	Renauld Brothers	78	Natural	
5/16/2006	Vernon Elementary School	79	Natural	
5/16/2006	Wilmington State Garage	80	Natural	
5/16/2006	Windham County Court	81	Natural	
6/19/2006	Brattleboro State Police	73	Natural	
6/19/2006	D&E Tree, Guilford	74	Natural	
6/19/2006	Dummerston State Garage	75	Natural	
6/19/2006	Guilford Town Garage	76	Natural	
6/19/2006	Power Line River Crossing	77	Natural	
6/19/2006	Renauld Brothers	78	Natural	
6/19/2006	Vernon Elementary School	79	Natural	
6/19/2006	Wilmington State Garage	80	Natural	
6/19/2006	Windham County Court	81	Natural	
7/28/2006	Brattleboro State Police	73	Natural	
7/28/2006	D&E Tree, Guilford	74	Natural	
7/28/2006	Dummerston State Garage	75	Natural	
7/28/2006	Guilford Town Garage	76	Natural	
7/28/2006	Power Line River Crossing	77	Natural	
7/28/2006	Renauld Brothers	78	Natural	
7/28/2006	Vernon Elementary School	79	Natural	
7/28/2006	Wilmington State Garage	80	Natural	
7/28/2006	Windham County Court	81	Natural	
8/30/2006	Brattleboro State Police	73	N/A	Electrical Failure
8/30/2006	D&E Tree, Guilford	74	Natural	
8/30/2006	Dummerston State Garage	75	Natural	
8/30/2006	Guilford Town Garage	76	Natural	
8/30/2006	Power Line River Crossing	77	Natural	
8/30/2006	Renauld Brothers	78	Natural	
8/30/2006	Vernon Elementary School	79	Natural	
8/30/2006	Wilmington State Garage	80	Natural	
8/30/2006	Windham County Court	81	Natural	

Sample	Sample	Map	Results	Sample
Date	Location	ID No.	pCi/m ³	Comment
9/27/2006	Brattleboro State Police	73	N/A	Electrical Failure
9/27/2006	D&E Tree, Guilford	74	Natural	
9/27/2006	Dummerston State Garage	75	Natural	
9/27/2006	Guilford Town Garage	76	Natural	
9/27/2006	Power Line River Crossing	77	Natural	
9/27/2006	Renauld Brothers	78	Natural	
9/27/2006	Vernon Elementary School	79	Natural	
9/27/2006	Wilmington State Garage	80	Natural	
9/27/2006	Windham County Court	81	Natural	
10/26/2006	Brattleboro State Police	73	Natural	
10/26/2006	D&E Tree, Guilford	74	Natural	
10/26/2006	Dummerston State Garage	75	Natural	
10/26/2006	Guilford Town Garage	76	Natural	
10/26/2006	Power Line River Crossing	77	Natural	
10/26/2006	Renauld Brothers	78	Natural	
10/26/2006	Vernon Elementary School	79	Natural	
10/26/2006	Wilmington State Garage	80	Natural	
10/26/2006	Windham County Court	81	Natural	
11/22/2006	Brattleboro State Police	73	Natural	
11/22/2006	D&E Tree, Guilford	74	Natural	
11/22/2006	Dummerston State Garage	75	Natural	
11/22/2006	Guilford Town Garage	76	Natural	
11/22/2006	Power Line River Crossing	77	Natural	
11/22/2006	Renauld Brothers	78	Natural	
11/22/2006	Vernon Elementary School	79	Natural	
11/22/2006	Wilmington State Garage	80	Natural	
11/22/2006	Windham County Court	81	Natural	
12/21/2006	Brattleboro State Police	73	Natural	
12/21/2006	D&E Tree, Guilford	74	Natural	
12/21/2006	Dummerston State Garage	75	Natural	
12/21/2006	Guilford Town Garage	76	Natural	
12/21/2006	Power Line River Crossing	77	Natural	
12/21/2006	Renauld Brothers	78	Natural	
12/21/2006	Vernon Elementary School	79	Natural	
12/21/2006	Wilmington State Garage	80	Natural	
12/21/2006	Windham County Court	81	Natural	

Table 11. 2006 Air Sample Gamma Radioactivity Results (continued)

Sample	Sample	Results	Error	Sample
Date	Location	pCi/m ³	pCi/m ³	Comment
3/31/2006	All 9 Vermont Yankee Filters for Quarter 1	4520	400	Be-7
6/30/2006	All 1 Vermont Yankee Filters for Quarter 2	268	81	Be-7
6/30/2006	All 8 Vermont Yankee Filters for Quarter 2	5050	430	Be-7
10/31/2006	All 9 Vermont Yankee Filters for Quarter 3	4270	770	Be-7
12/31/2006	All 9 Vermont Yankee Filters for Quarter 4	3220	310	Be-7

Table 12. 2006 Air Sample Quarterly Composite Results

Table 13. Common Natural Gamma Radiation Emitters

actinium-228	beryllium-7	bismuth-212
bismuth-214	lead-210	lead-212
lead-214	potassium-40	protactinium-234m
thallium-208	thorium-231	thorium-234
uranium-235.		

Table 14. Nuclear Facility Gamma Radiation Emitters

Antimony-124	Antimony-126	
barium-140/lanthanum-140	cerium-139	Cerium-140
Cerium-144/promethium-144	Cobalt-56	Cobalt-60
Chromium-51	Cesium-134	Cesium-136
Cesium-137	Iodine-131	Iodine-132
Iodine-133	Iodine-135	Krypton-85
Krypton-88	Manganese-54	Plutonium-239
Plutonium-240	Ruthenium-103	Ruthenium-106
Strontium-85	Strontium-89	Strontium-90
Tellurium-132	Xenon-133	Xenon-133m
Xenon-135	Zinc-65	Zirconium-95/niobium-95

Water Sampling Results

Water is sampled each month at 10 locations. Six are samples from the Connecticut River. Two samples are taken monthly in locations in the pool where the plant discharges cooling water. Two samples are taken from the river upstream of the station in Brattleboro, and two more are taken monthly downstream of the station in the pool just below the Vernon dam. The last four samples include one from the Brattleboro municipal water supply, and one each from groundwater wells that serve the Miller Farm, the Blodgett Farm and the Vernon Elementary School. Results are in Tables 15 - 18.

Each of the water samples undergoes four different analyses. The first three analyses are like those for the air samples. One is for alpha radioactivity; a second analysis is for beta radioactivity, and the last is an analysis for all radionuclides by gamma spectroscopy. The fourth analysis is unique to the water samples. It is an analysis for tritium, the common name for hydrogen-3.

Tritium is a concern because water that passes through the reactor core at Vermont Yankee Nuclear Power Station can become tritiated as the hydrogen atoms in water molecules are activated by neutron radiation in the reactor core. Tritiated water may leave the plant site any way non-radioactive water leaves the plant - in the air, in groundwater and through discharges into surface waters like the Connecticut River. Unmonitored tritium releases from nuclear facilities have been a source of concern. Tritium monitoring by the Vermont Department of Health may help identify releases if they develop.

A map showing the water samples, Map 9, is below. Tables 15, 16, 17 and 18 present the water sample results. The tables list the map identification numbers so the locations can be seen on Map 9. Sample locations 84A and 86 are in the Connecticut River downstream. These are labeled in Tables 15 to 18 as Connecticut River, Station 3-3 and Connecticut River Downstream. Sample locations 84B and 84D are in the basin where Vermont Yankee Nuclear Power Station discharges water from the plant into the

Vermont Department of Health Water Sampling Results

Connecticut River. The tables identify them as Connecticut River, Station 3-4 and Discharge Forebay. Samples 84C and 87 are in the Connecticut River upstream of the plant. They are identified as Connecticut River, Station 3-8 and Connecticut River Upstream in Table 15, 16, 17 and 18.

In addition to showing the individual analysis results over the course of 2006, we have taken the mean results of each of the samples at the 10 water sample locations. Figures 3 and 4 allow comparison to the mean alpha and mean beta radioactivity results for the 10 locations.

Alpha Radioactivity Analyses

In the graph in Figure 3, it can be seen clearly that much less alpha radioactivity is found in river water as compared to groundwater. The Miller Farm, Blodgett Farm and Vernon Elementary School water is supplied by groundwater wells, and the mean alpha radioactivity results, particularly for the Blodgett Farm and Vernon Elementary School, seem to show the results of geologic contamination of the water from uranium, radium and other naturally occurring alpha radiation-emitting radioactive materials. Vermont Department of Health Laboratory analyses also indicate this is the case. The Brattleboro Fire Department water sample may be indicative of the effects of filtration and other water treatment processes on these naturally occurring alpha radiation-emitting materials.

The Connecticut River upstream sample results of 0.358 to 0.543 pCi per liter (pCi/l) may be useful as a sort of background relative to water samples taken near the Vermont Yankee Nuclear Power Station discharge area and downstream in the Connecticut River. The upstream samples are taken near Brattleboro. The samples more likely to be affected by Vermont Yankee Nuclear Power Station operations, near the discharge and downstream of the plant discharge are in the range of 0.232 to 0.800 pCi/l. Considering the results with their uncertainty at the 95 percent confidence level, there is little statistical difference between water samples in the discharge basin and downstream of

Vermont Yankee Nuclear Power Station as compared to water samples upstream of Vermont Yankee Nuclear Power Station.

Beta Radioactivity Analysis

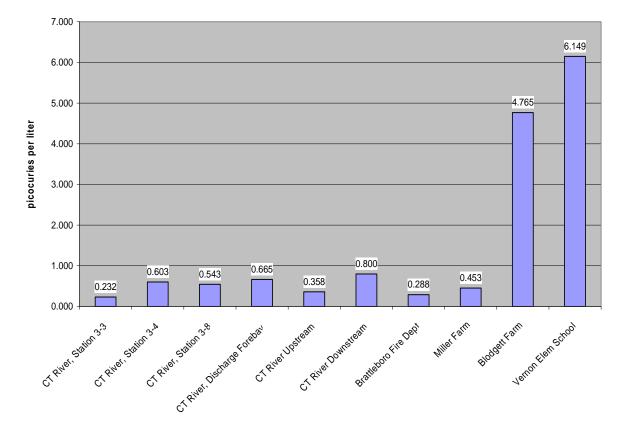
In the graph in Figure 4, the characteristic results observed in the alpha radioactivity analyses are also seen with beta radioactivity. Specifically, the river water samples contain significantly less radioactivity as compared to the groundwater samples. Also like the alpha radioactivity sample results, the samples from the Connecticut River near the Vermont Yankee Nuclear Power Station discharge area and downstream of the plant, ranging from 0.549 pCi/l to 1.098 pCi/l, are not significantly different from the samples from the Connecticut River upstream of the station where the sample averages ranged between 0.938 and 1.202 pCi/l.

The well water samples, Blodgett and Miller Farm and Vernon Elementary School, also show the apparent effects of natural uranium and radium contamination of groundwater. In 2007, the Vermont Department of Health will analyze these water sources for uranium and radium routinely.

Gamma Spectroscopy

Gamma spectroscopy is a technique that allows for the identification and quantification of any radioactive material that emits gamma radiation. Most of the water samples, 84 of them, were found to be less than the lower limit of detection. Gamma radiation-emitting radioactive materials were identified in the remaining 34 samples, but all were naturally occurring radioactive materials. The gamma spectroscopy results for the water samples are found in Table 17. The lower limits of detection for water samples are listed in Table 19 below. The commonly identified natural radioactive materials may be found in Table 13 above.

Vermont Department of Health Water Sampling Results

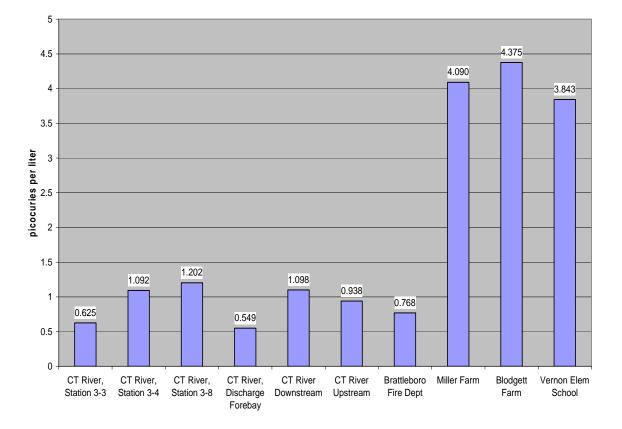

Tritium Measurement Results

No tritium above the laboratory instrumentation lower limit of detection, 300 pCi/l, was identified in any of the groundwater, surface water or municipal water samples obtained by the Vermont Department of Health in 2006. The tritium analysis results are presented in Table 18.

Vermont Department of Health

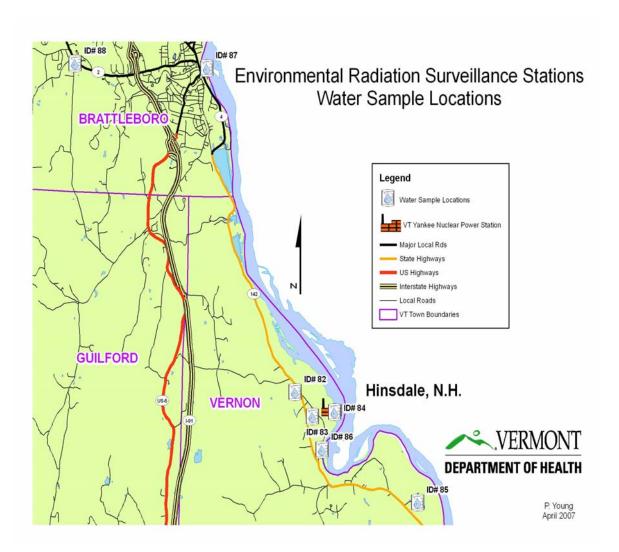
Water Sampling Results

Figure 3


Water Sample Alpha Radioactivity Analysis

Vermont Department of Health

Water Sampling Results


Figure 4

Vermont Department of Health Water Sampling Results

Map 9

Sample	Sample	Map	Results	Error	Analysis
Date	Location	ID No.	pCi/l	pCi/l	Method
1/13/2006	CT River, Station 3-3	84A	1.14	1.55	EPA 900
1/13/2006	CT River, Station 3-4	84B	0	1.45	EPA 900
1/13/2006	CT River, Station 3-8	84C	1.65	1.52	EPA 900
1/13/2006	Discharge Forebay	84D	0.56	1.49	EPA 900
1/23/2006	Brattleboro Fire Dept	88	0.16	0.84	EPA 900
1/23/2006	CT River Downstream	86	2.76	1	EPA 900
1/23/2006	CT River Upstream	87	0.93	0.86	EPA 900
1/23/2006	Vernon Elem School	83	5.88	1.13	EERF 00-02
2/15/2006	CT River, Station 3-3	84A	0	0.78	EPA 900
2/15/2006	CT River, Station 3-4	84B	1.62	1.49	EPA 900
2/15/2006	CT River, Station 3-8	84C	0.27	1.41	EPA 900
2/15/2006	Discharge Forebay	84D	0.54	1.43	EPA 900
2/21/2006	Blodgett Farm	85	4.58	1.06	EERF 00-02
2/21/2006	Brattleboro Fire Dept	88	0.31	0.83	EPA 900
2/21/2006	CT River Downstream	86	0.82	1.46	EPA 900
2/21/2006	CT River Upstream	87	0.27	1.42	EPA 900
2/21/2006	Miller Farm	82	0.14	0.72	EERF 00-02
2/21/2006	Vernon Elem School	83	5.4	1.11	EERF 00-02
3/14/2006	CT River, Station 3-3	84A	1.7	1.39	EPA 900
3/14/2006	CT River, Station 3-4	84B	0.55	1.27	EPA 900
3/14/2006	CT River, Station 3-8	84C	1.94	1.38	EPA 900
3/14/2006	Discharge Forebay	84D	1.13	1.34	EPA 900
3/23/2006	Blodgett Farm	85	4.89	1.08	EERF 00-02
3/23/2006	Brattleboro Fire Dept	88	1.34	1.29	EPA 900
3/23/2006	CT River Downstream	86	1.61	1.31	EPA 900
3/23/2006	CT River Upstream	87	1.39	1.34	EPA 900
3/23/2006	Miller Farm	82	0	0.71	EERF 00-02
3/23/2006	Vernon Elem School	83	6.52	1.18	EERF 00-02
4/14/2006	CT River, Station 3-3	84A	0.52	1.13	EPA 900
4/14/2006	CT River, Station 3-4	84B	2.62	1.28	EPA 900
4/14/2006	CT River, Station 3-8	84C	0.67	0.45	EPA 900
4/14/2006	Discharge Forebay	84D	1.57	1.21	EPA 900
4/18/2006	Blodgett Farm	85	3.97	1.05	EERF 00-02
4/18/2006	Brattleboro Fire Dept	88	0.94	0.73	EPA 900
4/18/2006	CT River Downstream	86	1.67	1.28	EPA 900
4/18/2006	CT River Upstream	87	1.39	1.26	EPA 900
4/18/2006	Miller Farm	82	0.48	0.79	EERF 00-02
4/18/2006	Vernon Elem School	83	4.86	1.11	EERF 00-02

Table 15. 2006 Water Sample Alpha Radioactivity Results

Sample	Sample	Map	Results	Error	Analysis
Date	Location	ID No.	pCi/l	pCi/l	Method
5/15/2006	CT River, Station 3-3	84A	1.04	1.44	EPA 900
5/15/2006	CT River, Station 3-4	84B	1.77	0.9	EPA 900
5/15/2006	CT River, Station 3-8	84C	2.3	0.96	EPA 900
5/15/2006	Discharge Forebay	84D	2.91	1	EPA 900
5/16/2006	Blodgett Farm	85	4.95	1.04	EERF 00-02
5/16/2006	Brattleboro Fire Dept	88	1.3	0.87	EPA 900
5/16/2006	CT River Downstream	86	1.1	0.9	EPA 900
5/16/2006	CT River Upstream	87	1.26	0.91	EPA 900
5/16/2006	Miller Farm	82	0.76	0.71	EERF 00-02
5/16/2006	Vernon Elem School	83	6.12	1.11	EERF 00-02
6/16/2006	CT River, Station 3-3	84A	0.31	0.84	EPA 900
6/16/2006	CT River, Station 3-4	84B	0	0.8	EPA 900
6/16/2006	CT River, Station 3-8	84C	-0.3	0.77	EPA 900
6/16/2006	Discharge Forebay	84D	0.3	0.81	EPA 900
6/19/2006	Blodgett Farm	85	5.61	1.1	EERF 00-02
6/19/2006	Brattleboro Fire Dept	88	0.56	1.52	EPA 900
6/19/2006	CT River Downstream	86	1.12	1.55	EPA 900
6/19/2006	CT River Upstream	87	-0.27	1.44	EPA 900
6/19/2006	Miller Farm	82	0.28	0.69	EERF 00-02
6/19/2006	Vernon Elem School	83	5.69	1.06	EERF 00-02
7/14/2006	CT River, Station 3-3	84A	0.28	1.46	EPA 900
7/14/2006	CT River, Station 3-4	84B	0.83	1.48	EPA 900
7/14/2006	CT River, Station 3-8	84C	0.84	1.49	EPA 900
7/14/2006	Discharge Forebay	84D	0.28	1.45	EPA 900
7/28/2006	Blodgett Farm	85	5.24	1.07	EERF 00-02
7/28/2006	Brattleboro Fire Dept	88	-0.29	1.46	EPA 900
7/28/2006	CT River Downstream	86	0	1.41	EPA 900
7/28/2006	CT River Upstream	87	0.84	1.49	EPA 900
7/28/2006	Miller Farm	82	0.07	0.65	EERF 00-02
7/28/2006	Vernon Elem School	83	4.26	1	EERF 00-02
8/15/2006	CT River, Station 3-3	84A	-0.82	1.4	EPA 900
8/15/2006	CT River, Station 3-4	84B	-0.28	1.45	EPA 900
8/15/2006	CT River, Station 3-8	84C	-1.11	1.4	EPA 900
8/15/2006	Discharge Forebay	84D	-0.28	1.44	EPA 900
8/30/2006	Blodgett Farm	85	5.96	1.12	EERF 00-02
8/30/2006	Brattleboro Fire Dept	88	0.29	1.54	EPA 900
8/30/2006	CT River Downstream	86	0.59	1.58	EPA 900
8/30/2006	CT River Upstream	87	0.57	1.55	EPA 900
8/30/2006	Miller Farm	82	0.35	0.69	EERF 00-02
8/30/2006	Vernon Elem School	83	5.52	1.12	EERF 00-02

Table 15. 2006 Water Sample Alpha Radioactivity Results (continued)

Sample	Sample	Мар	Results	Error	Analysis
Date	Location	ID No.	pCi/l	pCi/l	Method
9/15/2006	CT River, Station 3-3	84A	-0.87	1.4	EPA 900
9/15/2006	CT River, Station 3-4	84B	-0.85	1.37	EPA 900
9/15/2006	CT River, Station 3-8	84C	0	1.43	EPA 900
9/15/2006	Discharge Forebay	84D	-1.13	1.35	EPA 900
9/27/2006	Blodgett Farm	85	4.9	1.02	EERF 00-02
9/27/2006	Brattleboro Fire Dept	88	-0.34	0.84	EPA 900
9/27/2006	CT River Downstream	86	-0.31	1.51	EPA 900
9/27/2006	CT River Upstream	87	-1.5	1.41	EPA 900
9/27/2006	Miller Farm	82	0.92	0.69	EERF 00-02
9/27/2006	Vernon Elem School	83	7.89	1.21	EERF 00-02
10/13/2006	CT River, Station 3-3	84A	0	1.49	EPA 900
10/13/2006	CT River, Station 3-4	84B	0	1.47	EPA 900
10/13/2006	CT River, Station 3-8	84C	-1.17	1.47	EPA 900
10/13/2006	Discharge Forebay	84D	1.72	1.62	EPA 900
10/27/2006	Blodgett Farm	85	3.82	1	EERF 00-02
10/27/2006	Brattleboro Fire Dept	88	-0.27	1.39	EPA 900
10/27/2006	CT River Downstream	86	0	0.79	EPA 900
10/27/2006	CT River Upstream	87	-0.31	0.8	EPA 900
10/27/2006	Miller Farm	82	1.71	0.85	EERF 00-02
10/27/2006	Vernon Elem School	83	8.94	1.14	EERF 00-02
11/15/2006	CT River, Station 3-3	84A	0	0.8	EPA 900
11/15/2006	CT River, Station 3-4	84B	0.44	0.77	EPA 900
11/15/2006	CT River, Station 3-8	84C	0.9	0.81	EPA 900
11/15/2006	Discharge Forebay	84D	-0.15	0.73	EPA 900
11/22/2006	Blodgett Farm	85	4.6	1.08	EERF 00-02
11/22/2006	Brattleboro Fire Dept	88	-0.55	1.34	EPA 900
11/22/2006	CT River Downstream	86	-0.56	1.37	EPA 900
11/22/2006	CT River Upstream	87	-0.54	1.33	EPA 900
11/22/2006	Miller Farm	82	0	0.72	EERF 00-02
11/22/2006	Vernon Elem School	83	N/A		
12/15/2006	CT River, Station 3-3	84A	-0.52	1.25	EPA 900
12/15/2006	CT River, Station 3-4	84B	0.53	1.34	EPA 900
12/15/2006	CT River, Station 3-8	84C	0.53	1.34	EPA 900
12/15/2006	Discharge Forebay	84D	0.53	1.33	EPA 900
12/21/2006	Blodgett Farm	85	3.89	0.98	EERF 00-02
12/21/2006	Brattleboro Fire Dept	88	0	1.34	EPA 900
12/21/2006	CT River Downstream	86	0.8	1.37	EPA 900
12/21/2006	CT River Upstream	87	0.26	1.31	EPA 900
12/21/2006	Miller Farm	82	0.27	0.68	EERF 00-02
12/21/2006	Vernon Elem School	83	6.56	1.15	EERF 00-02

Sample	Sample	Мар	Results	Error	Analysis
Date	Location	ID No.	pCi/l	pCi/l	Method
1/13/2006	CT River, Station 3-3	84A	0	1.78	EPA 900
1/13/2006	CT River, Station 3-4	84B	0.91	1.81	EPA 900
1/13/2006	CT River, Station 3-8	84C	0.76	1.8	EPA 900
1/13/2006	Discharge Forebay	84D	-0.46	1.77	EPA 900
1/23/2006	Brattleboro Fire Dept	88	0.91	0.92	EPA 900
1/23/2006	CT River Downstream	86	2.05	0.94	EPA 900
1/23/2006	CT River Upstream	87	0.53	0.9	EPA 900
1/23/2006	Vernon Elem School	83	2.89	1.86	EPA 900
2/15/2006	CT River, Station 3-3	84A	0.7	0.92	EPA 900
2/15/2006	CT River, Station 3-4	84B	1.86	1.86	EPA 900
2/15/2006	CT River, Station 3-8	84C	1.09	1.84	EPA 900
2/15/2006	Discharge Forebay	84D	-0.31	1.8	EPA 900
2/21/2006	Blodgett Farm	85	3.28	1.9	EPA 900
2/21/2006	Brattleboro Fire Dept	88	0.47	0.92	EPA 900
2/21/2006	CT River Downstream	86	-0.47	1.8	EPA 900
2/21/2006	CT River Upstream	87	-0.16	1.81	EPA 900
2/21/2006	Miller Farm	82	6.7	1.97	EPA 900
2/21/2006	Vernon Elem School	83	4.68	1.93	EPA 900
3/14/2006	CT River, Station 3-3	84A	0.8	1.87	EPA 900
3/14/2006	CT River, Station 3-4	84B	1.91	1.9	EPA 900
3/14/2006	CT River, Station 3-8	84C	1.91	1.9	EPA 900
3/14/2006	Discharge Forebay	84D	2.23	1.9	EPA 900
3/23/2006	Blodgett Farm	85	7.05	2.03	EPA 900
3/23/2006	Brattleboro Fire Dept	88	0.16	1.85	EPA 900
3/23/2006	CT River Downstream	86	1.11	1.88	EPA 900
3/23/2006	CT River Upstream	87	0.8	1.87	EPA 900
3/23/2006	Miller Farm	82	5.59	1.99	EPA 900
3/23/2006	Vernon Elem School	83	4.16	1.96	EPA 900
4/14/2006	CT River, Station 3-3	84A	0.15	1.73	EPA 900
4/14/2006	CT River, Station 3-4	84B	-0.15	1.73	EPA 900
4/14/2006	CT River, Station 3-8	84C	0.54	0.59	EPA 900
4/14/2006	Discharge Forebay	84D	0.29	1.74	EPA 900
4/18/2006	Blodgett Farm	85	3.54	1.82	EPA 900
4/18/2006	Brattleboro Fire Dept	88	1.47	0.9	EPA 900
4/18/2006	CT River Downstream	86	0.73	1.75	EPA 900
4/18/2006	CT River Upstream	87	0.88	1.75	EPA 900
4/18/2006	Miller Farm	82	3.97	1.83	EPA 900
4/18/2006	Vernon Elem School	83	1.62	1.78	EPA 900

Table 16. 2006 Water Sample Beta Radioactivity Results

Sample	Sample	Мар	Results	Error	Analysis
Date	Location	ID No.	pCi/l	pCi/l	Method
5/15/2006	CT River, Station 3-3	84A	0.62	1.8	EPA 900
5/15/2006	CT River, Station 3-4	84B	1.01	0.92	EPA 900
5/15/2006	CT River, Station 3-8	84C	2.73	0.96	EPA 900
5/15/2006	Discharge Forebay	84D	0.86	0.92	EPA 900
5/16/2006	Blodgett Farm	85	3.61	1.89	EPA 900
5/16/2006	Brattleboro Fire Dept	88	0.78	0.92	EPA 900
5/16/2006	CT River Downstream	86	1.48	0.93	EPA 900
5/16/2006	CT River Upstream	87	1.25	0.93	EPA 900
5/16/2006	Miller Farm	82	4.22	1.9	EPA 900
5/16/2006	Vernon Elem School	83	4.54	1.91	EPA 900
6/16/2006	CT River, Station 3-3	84A	1.17	0.91	EPA 900
6/16/2006	CT River, Station 3-4	84B	1.25	0.91	EPA 900
6/16/2006	CT River, Station 3-8	84C	0.93	0.9	EPA 900
6/16/2006	Discharge Forebay	84D	1.32	0.91	EPA 900
6/19/2006	Blodgett Farm	85	5.47	1.9	EPA 900
6/19/2006	Brattleboro Fire Dept	88	1.09	1.79	EPA 900
6/19/2006	CT River Downstream	86	0.78	1.78	EPA 900
6/19/2006	CT River Upstream	87	1.09	1.79	EPA 900
6/19/2006	Miller Farm	82	5.25	1.92	EPA 900
6/19/2006	Vernon Elem School	83	6.1	1.92	EPA 900
7/14/2006	CT River, Station 3-3	84A	0.47	1.83	EPA 900
7/14/2006	CT River, Station 3-4	84B	1.73	1.86	EPA 900
7/14/2006	CT River, Station 3-8	84C	0.94	1.84	EPA 900
7/14/2006	Discharge Forebay	84D	0.31	1.82	EPA 900
7/28/2006	Blodgett Farm	85	4.1	1.92	EPA 900
7/28/2006	Brattleboro Fire Dept	88	-0.47	1.8	EPA 900
7/28/2006	CT River Downstream	86	0.31	1.82	EPA 900
7/28/2006	CT River Upstream	87	0.63	1.83	EPA 900
7/28/2006	Miller Farm	82	3.15	1.89	EPA 900
7/28/2006	Vernon Elem School	83	2.53	1.89	EPA 900
8/15/2006	CT River, Station 3-3	84A	1.07	1.74	EPA 900
8/15/2006	CT River, Station 3-4	84B	0.31	1.72	EPA 900
8/15/2006	CT River, Station 3-8	84C	1.38	1.74	EPA 900
8/15/2006	Discharge Forebay	84D	1.07	1.74	EPA 900
8/30/2006	Blodgett Farm	85	3.4	1.81	EPA 900
8/30/2006	Brattleboro Fire Dept	88	1.53	1.75	EPA 900
8/30/2006	CT River Downstream	86	3.22	1.79	EPA 900
8/30/2006	CT River Upstream	87	2.3	1.77	EPA 900
8/30/2006	Miller Farm	82	4.91	1.83	EPA 900
8/30/2006	Vernon Elem School	83	4.17	1.83	EPA 900

Sample	Sample	Мар	Results	Error	Analysis
Date	Location	ID No.	pCi/l	pCi/l	Method
9/15/2006	CT River, Station 3-3	84A	0.15	1.81	EPA 900
9/15/2006	CT River, Station 3-4	84B	1.51	1.84	EPA 900
9/15/2006	CT River, Station 3-8	84C	-1.06	1.78	EPA 900
9/15/2006	Discharge Forebay	84D	-0.61	1.79	EPA 900
9/27/2006	Blodgett Farm	85	2.44	1.88	EPA 900
9/27/2006	Brattleboro Fire Dept	88	0.76	0.93	EPA 900
9/27/2006	CT River Downstream	86	1.21	1.84	EPA 900
9/27/2006	CT River Upstream	87	0.15	1.81	EPA 900
9/27/2006	Miller Farm	82	0.76	1.83	EPA 900
9/27/2006	Vernon Elem School	83	3.35	1.9	EPA 900
10/13/2006	CT River, Station 3-3	84A	1.1	1.87	EPA 900
10/13/2006	CT River, Station 3-4	84B	1.1	1.87	EPA 900
10/13/2006	CT River, Station 3-8	84C	3.15	1.92	EPA 900
10/13/2006	Discharge Forebay	84D	1.73	1.89	EPA 900
10/27/2006	Blodgett Farm	85	3.33	1.94	EPA 900
10/27/2006	Brattleboro Fire Dept	88	1.73	1.88	EPA 900
10/27/2006	CT River Downstream	86	1.97	0.97	EPA 900
10/27/2006	CT River Upstream	87	2.21	0.98	EPA 900
10/27/2006	Miller Farm	82	3.63	1.93	EPA 900
10/27/2006	Vernon Elem School	83	3.79	1.94	EPA 900
11/15/2006	CT River, Station 3-3	84A	0.95	0.95	EPA 900
11/15/2006	CT River, Station 3-4	84B	0.87	0.95	EPA 900
11/15/2006	CT River, Station 3-8	84C	0.63	0.95	EPA 900
11/15/2006	Discharge Forebay	84D	0.79	0.95	EPA 900
11/22/2006	Blodgett Farm	85	5.56	2	EPA 900
11/22/2006	Brattleboro Fire Dept	88	0.63	1.87	EPA 900
11/22/2006	CT River Downstream	86	1.26	1.89	EPA 900
11/22/2006	CT River Upstream	87	0.95	1.88	EPA 900
11/22/2006	Miller Farm	82	3.01	1.93	EPA 900
11/22/2006	Vernon Elem School	83	N/A		
12/15/2006	CT River, Station 3-3	84A	0.32	1.86	EPA 900
12/15/2006	CT River, Station 3-4	84B	0.79	1.87	EPA 900
12/15/2006	CT River, Station 3-8	84C	1.42	1.88	EPA 900
12/15/2006	Discharge Forebay	84D	-0.63	1.83	EPA 900
12/21/2006	Blodgett Farm	85	6.35	2.01	EPA 900
12/21/2006	Brattleboro Fire Dept	88	0.16	1.85	EPA 900
12/21/2006	CT River Downstream	86	-0.47	1.84	EPA 900
12/21/2006	CT River Upstream	87	0.63	1.87	EPA 900
12/21/2006	Miller Farm	82	3.8	1.94	EPA 900
12/21/2006	Vernon Elem School	83	4.44	1.96	EPA 900

Table 16. 2006 Water Sample Beta Radioactivity Results (continued)

Sample	Sample	Мар	Results
Date	Location	ID No.	pCi/l
1/13/2006	CT River, Station 3-3	84A	<lld< td=""></lld<>
1/13/2006	CT River, Station 3-4	84B	<lld< td=""></lld<>
1/13/2006	CT River, Station 3-8	84C	<lld< td=""></lld<>
1/13/2006	Discharge Forebay	84D	<lld< td=""></lld<>
1/23/2006	Brattleboro Fire Dept	86	< LLD
1/23/2006	CT River Downstream	87	< LLD
1/23/2006	CT River Upstream	82	< LLD
1/23/2006	Vernon Elem School	83	Natural
2/15/2006	CT River, Station 3-3	84A	< LLD
2/15/2006	CT River, Station 3-4	84B	< LLD
2/15/2006	CT River, Station 3-8	84C	< LLD
2/15/2006	Discharge Forebay	84D	< LLD
2/21/2006	Blodgett Farm	85	Natural
2/21/2006	Brattleboro Fire Dept	88	< LLD
2/21/2006	CT River Downstream	86	< LLD
2/21/2006	CT River Upstream	87	< LLD
2/21/2006	Miller Farm	82	Natural
2/21/2006	Vernon Elem School	83	Natural
3/14/2006	CT River, Station 3-3	84A	< LLD
3/14/2006	CT River, Station 3-4	84B	< LLD
3/14/2006	CT River, Station 3-8	84C	< LLD
3/14/2006	Discharge Forebay	84D	< LLD
3/23/2006	Blodgett Farm	85	Natural
3/23/2006	Brattleboro Fire Dept	88	< LLD
3/23/2006	CT River Downstream	86	< LLD
3/23/2006	CT River Upstream	87	< LLD
3/23/2006	Miller Farm	82	Natural
3/23/2006	Vernon Elem School	83	Natural
4/14/2006	CT River, Station 3-3	84A	< LLD
4/14/2006	CT River, Station 3-4	84B	< LLD
4/14/2006	CT River, Station 3-8	84C	< LLD
4/14/2006	Discharge Forebay	84D	< LLD
4/18/2006	Blodgett Farm	85	Natural
4/18/2006	Brattleboro Fire Dept	88	< LLD
4/18/2006	CT River Downstream	86	< LLD
4/18/2006	CT River Upstream	87	< LLD
4/18/2006	Miller Farm	82	Natural
4/18/2006	Vernon Elem School	83	Natural

Table 17. 2006 Water Sample Gamma Radioactivity Results

LLD: Lower limits of detection

Table 17. 2006 Water Sample Gamma	Radioactivity Results (continued)
-----------------------------------	-----------------------------------

DateLocationID No.PC/I $5/15/2006$ CT River, Station 3-3 $84A$ < LLD $5/15/2006$ CT River, Station 3-4 $84B$ < LLD $5/15/2006$ CT River, Station 3-8 $84C$ < LLD $5/15/2006$ Discharge Forebay $84D$ < LLD $5/16/2006$ Blodgett Farm 85 Natural $5/16/2006$ Brattleboro Fire Dept 88 < LLD $5/16/2006$ CT River Downstream 86 < LLD $5/16/2006$ CT River Upstream 87 < LLD $5/16/2006$ CT River, Station 3-3 $84A$ < LLD $6/16/2006$ CT River, Station 3-3 $84A$ < LLD $6/16/2006$ CT River, Station 3-3 $84A$ < LLD $6/16/2006$ CT River, Station 3-8 $84C$ < LLD $6/16/2006$ Discharge Forebay $84D$ < LLD $6/19/2006$ Blodgett Farm 85 Natural $6/19/2006$ Brattleboro Fire Dept 88 < LLD $6/19/2006$ CT River Upstream 87 < LLD $6/19/2006$ CT River, Station 3-3 $84A$ < LLD $7/14/2006$ CT River, Station 3-3 $84A$ < LLD $7/14/2006$ CT River, Station 3-3 $84A$ < LLD $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 < LLD $7/28/2006$ Brattleboro Fire Dept 84 < LLD $7/28/2006$ CT River, Station 3-3 $84A$ < LLD $7/28/2$	Sample	Sample	Мар	Results																																																																																																																								
5/15/2006CT River, Station 3-3 $84A$ < LLD																																																																																																																												
5/15/2006CT River, Station 3-4 $84B$ < LLD $5/15/2006$ Discharge Forebay $84D$ < LLD																																																																																																																												
5/15/2006CT River, Station 3-8 $84C$ < LLD $5/15/2006$ Discharge Forebay $84D$ < LLD			84B																																																																																																																									
5/15/2006 Discharge Forebay $84D$ < LLD		,	84C	< LLD																																																																																																																								
5/16/2006Blodgett Farm 85 Natural $5/16/2006$ Brattleboro Fire Dept 88 $<$ LLD $5/16/2006$ CT River Downstream 86 $<$ LLD $5/16/2006$ CT River Upstream 87 $<$ LLD $5/16/2006$ Miller Farm 82 Natural $5/16/2006$ CT River, Station 3-3 $84A$ $<$ LLD $6/16/2006$ CT River, Station 3-4 $84B$ $<$ LLD $6/16/2006$ CT River, Station 3-8 $84C$ $<$ LLD $6/16/2006$ CT River, Station 3-8 $84C$ $<$ LLD $6/16/2006$ Discharge Forebay $84D$ $<$ LLD $6/19/2006$ Blodgett Farm 85 Natural $6/19/2006$ Brattleboro Fire Dept 88 $<$ LLD $6/19/2006$ CT River Upstream 87 $<$ LLD $6/19/2006$ CT River, Station 3-3 $84A$ $<$ LLD $6/19/2006$ CT River, Station 3-3 $84A$ $<$ LLD $7/14/2006$ CT River, Station 3-3 $84A$ $<$ LLD $7/14/2006$ CT River, Station 3-3 $84A$ $<$ LLD $7/14/2006$ CT River, Station 3-8 $84C$ $<$ LLD $7/14/2006$ Discharge Forebay $84D$ $<$ LLD $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $<$ LLD $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-3 $84A$			84D																																																																																																																									
5/16/2006Brattleboro Fire Dept 88 < LLD $5/16/2006$ CT River Downstream 86 < LLD	5/16/2006		85																																																																																																																									
5/16/2006CT River Downstream 86 < LLD $5/16/2006$ CT River Upstream 87 < LLD	5/16/2006	0	88	< LLD																																																																																																																								
5/16/2006Miller Farm 82 Natural $5/16/2006$ CT River, Station 3-3 $84A$ $<$ LLD $6/16/2006$ CT River, Station 3-4 $84B$ $<$ LLD $6/16/2006$ CT River, Station 3-4 $84B$ $<$ LLD $6/16/2006$ Discharge Forebay $84D$ $<$ LLD $6/16/2006$ Discharge Forebay $84D$ $<$ LLD $6/16/2006$ Blodgett Farm 85 Natural $6/19/2006$ Brattleboro Fire Dept 88 $<$ LLD $6/19/2006$ CT River Downstream 86 $<$ LLD $6/19/2006$ CT River Upstream 87 $<$ LLD $6/19/2006$ Wernon Elem School 83 Natural $7/14/2006$ CT River, Station 3-3 $84A$ $<$ LLD $7/14/2006$ CT River, Station 3-4 $84B$ $<$ LLD $7/14/2006$ CT River, Station 3-4 $84B$ $<$ LLD $7/14/2006$ CT River, Station 3-8 $84C$ $<$ LLD $7/14/2006$ Discharge Forebay $84D$ $<$ LLD $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-3	5/16/2006		86	< LLD																																																																																																																								
5/16/2006Miller Farm 82 Natural $5/16/2006$ CT River, Station 3-3 $84A$ $<$ LLD $6/16/2006$ CT River, Station 3-4 $84B$ $<$ LLD $6/16/2006$ CT River, Station 3-4 $84B$ $<$ LLD $6/16/2006$ Discharge Forebay $84D$ $<$ LLD $6/16/2006$ Discharge Forebay $84D$ $<$ LLD $6/16/2006$ Blodgett Farm 85 Natural $6/19/2006$ Brattleboro Fire Dept 88 $<$ LLD $6/19/2006$ CT River Downstream 86 $<$ LLD $6/19/2006$ CT River Upstream 87 $<$ LLD $6/19/2006$ Wernon Elem School 83 Natural $7/14/2006$ CT River, Station 3-3 $84A$ $<$ LLD $7/14/2006$ CT River, Station 3-4 $84B$ $<$ LLD $7/14/2006$ CT River, Station 3-4 $84B$ $<$ LLD $7/14/2006$ CT River, Station 3-8 $84C$ $<$ LLD $7/14/2006$ Discharge Forebay $84D$ $<$ LLD $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-3	5/16/2006	CT River Upstream	87	< LLD																																																																																																																								
6/16/2006CT River, Station 3-3 $84A$ < LLD $6/16/2006$ CT River, Station 3-4 $84B$ < LLD	5/16/2006	—	82	Natural																																																																																																																								
6/16/2006CT River, Station 3-484B< LLD $6/16/2006$ CT River, Station 3-884C< LLD	5/16/2006	Vernon Elem School	83	Natural																																																																																																																								
6/16/2006CT River, Station 3-8 $84C$ $<$ LLD $6/16/2006$ Discharge Forebay $84D$ $<$ LLD $6/19/2006$ Blodgett Farm 85 Natural $6/19/2006$ Brattleboro Fire Dept 88 $<$ LLD $6/19/2006$ CT River Downstream 86 $<$ LLD $6/19/2006$ CT River Upstream 87 $<$ LLD $6/19/2006$ Miller Farm 82 Natural $6/19/2006$ Wernon Elem School 83 Natural $7/14/2006$ CT River, Station 3-3 $84A$ $<$ LLD $7/14/2006$ CT River, Station 3-4 $84B$ $<$ LLD $7/14/2006$ CT River, Station 3-8 $84C$ $<$ LLD $7/14/2006$ Discharge Forebay $84D$ $<$ LLD $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ CT River, Station 3-3 $84A$ $<$ LLD $7/28/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 </td <td>6/16/2006</td> <td>CT River, Station 3-3</td> <td>84A</td> <td>< LLD</td>	6/16/2006	CT River, Station 3-3	84A	< LLD																																																																																																																								
6/16/2006Discharge Forebay $84D$ $< LLD$ $6/19/2006$ Blodgett Farm 85 Natural $6/19/2006$ CT River Downstream 86 $< LLD$ $6/19/2006$ CT River Upstream 87 $< LLD$ $6/19/2006$ CT River Upstream 87 $< LLD$ $6/19/2006$ Miller Farm 82 Natural $6/19/2006$ Vernon Elem School 83 Natural $7/14/2006$ CT River, Station 3-3 $84A$ $< LLD$ $7/14/2006$ CT River, Station 3-4 $84B$ $< LLD$ $7/14/2006$ CT River, Station 3-8 $84C$ $< LLD$ $7/14/2006$ Discharge Forebay $84D$ $< LLD$ $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $< LLD$ $7/28/2006$ CT River Upstream 87 $< LLD$ $7/28/2006$ CT River, Station 3-3 $84A$ $< LLD$ $7/28/2006$ CT River, Station 3-3 $84A$ $< LLD$ $7/28/2006$ CT River, Station 3-3 $84A$ $< LLD$ $8/15/2006$ CT River, Station 3-3 $84A$ $< LLD$ $8/15/2006$ CT River, Station 3-3 $84A$ $< LLD$ $8/15/2006$ CT River, Station 3-4 $84B$ $< LLD$ $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $< LLD$ $8/30/2006$ Brattleboro Fire Dept 88 $< LLD$ $8/30/2006$ Brattleboro Fire Dept 88	6/16/2006	CT River, Station 3-4	84B	< LLD																																																																																																																								
6/19/2006Blodgett Farm85Natural6/19/2006Brattleboro Fire Dept88< LLD	6/16/2006	CT River, Station 3-8	84C	< LLD																																																																																																																								
6/19/2006Brattleboro Fire Dept88< LLD $6/19/2006$ CT River Downstream86< LLD	6/16/2006	Discharge Forebay	84D	< LLD																																																																																																																								
6/19/2006CT River Downstream 86 < LLD $6/19/2006$ CT River Upstream 87 < LLD	6/19/2006	Blodgett Farm	85	Natural																																																																																																																								
6/19/2006CT River Upstream 87 < LLD $6/19/2006$ Miller Farm 82 Natural $6/19/2006$ Vernon Elem School 83 Natural $7/14/2006$ CT River, Station 3-3 $84A$ < LLD	6/19/2006	Brattleboro Fire Dept	88	< LLD	6/19/2006Miller Farm 82 Natural $6/19/2006$ Vernon Elem School 83 Natural $7/14/2006$ CT River, Station 3-3 $84A$ $<$ LLD $7/14/2006$ CT River, Station 3-4 $84B$ $<$ LLD $7/14/2006$ CT River, Station 3-8 $84C$ $<$ LLD $7/14/2006$ Discharge Forebay $84D$ $<$ LLD $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $<$ LLD $7/28/2006$ CT River Downstream 86 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ CT River Upstream 86 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Wernon Elem School 83 Nat	6/19/2006	CT River Downstream	86	< LLD	6/19/2006Vernon Elem School83Natural $7/14/2006$ CT River, Station 3-3 $84A$ < LLD	6/19/2006	CT River Upstream	87	< LLD	7/14/2006CT River, Station 3-3 $84A$ $<$ LLD $7/14/2006$ CT River, Station 3-4 $84B$ $<$ LLD $7/14/2006$ CT River, Station 3-8 $84C$ $<$ LLD $7/14/2006$ Discharge Forebay $84D$ $<$ LLD $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $<$ LLD $7/28/2006$ CT River Downstream 86 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ CT River, Station 3-8 $84C$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ CT River Downstream 86 $<$ LLD $8/30/2006$ CT River Upstream 86 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural $8/30/2006$ Vernon Elem School 83 Natural	6/19/2006	Miller Farm	82	Natural	7/14/2006CT River, Station 3-4 $84B$ $< LLD$ $7/14/2006$ CT River, Station 3-8 $84C$ $< LLD$ $7/14/2006$ Discharge Forebay $84D$ $< LLD$ $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $< LLD$ $7/28/2006$ CT River Downstream 86 $< LLD$ $7/28/2006$ CT River Upstream 87 $< LLD$ $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ CT River, Station 3-3 $84A$ $< LLD$ $8/15/2006$ CT River, Station 3-3 $84A$ $< LLD$ $8/15/2006$ CT River, Station 3-4 $84B$ $< LLD$ $8/15/2006$ Discharge Forebay $84D$ $< LLD$ $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $< LLD$ $8/30/2006$ CT River Downstream 86 $< LLD$ $8/30/2006$ CT River Upstream 87 $< LLD$ $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural $8/30/2006$ Vernon Elem School 83 Natural	6/19/2006	Vernon Elem School	83	Natural	7/14/2006CT River, Station 3-8 $84C$ $< LLD$ $7/14/2006$ Discharge Forebay $84D$ $< LLD$ $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $< LLD$ $7/28/2006$ CT River Downstream 86 $< LLD$ $7/28/2006$ CT River Upstream 87 $< LLD$ $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Vernon Elem School 83 Natural $7/28/2006$ CT River, Station 3-3 $84A$ $< LLD$ $8/15/2006$ CT River, Station 3-4 $84B$ $< LLD$ $8/15/2006$ CT River, Station 3-8 $84C$ $< LLD$ $8/15/2006$ Discharge Forebay $84D$ $< LLD$ $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $< LLD$ $8/30/2006$ CT River Downstream 86 $< LLD$ $8/30/2006$ CT River Upstream 87 $< LLD$ $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural	7/14/2006	CT River, Station 3-3	84A	< LLD	7/14/2006Discharge Forebay $84D$ $< LLD$ $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $< LLD$ $7/28/2006$ CT River Downstream 86 $< LLD$ $7/28/2006$ CT River Upstream 87 $< LLD$ $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Wernon Elem School 83 Natural $8/15/2006$ CT River, Station 3-3 $84A$ $< LLD$ $8/15/2006$ CT River, Station 3-4 $84B$ $< LLD$ $8/15/2006$ CT River, Station 3-8 $84C$ $< LLD$ $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $< LLD$ $8/30/2006$ CT River Downstream 86 $< LLD$ $8/30/2006$ CT River Upstream 87 $< LLD$ $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural	7/14/2006	CT River, Station 3-4	84B	< LLD	7/28/2006Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $<$ LLD $7/28/2006$ CT River Downstream 86 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Vernon Elem School 83 Natural $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ CT River, Station 3-8 $84C$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ CT River Downstream 86 $<$ LLD $8/30/2006$ CT River Upstream 87 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural	7/14/2006		84C	< LLD	7/28/2006Brattleboro Fire Dept 88 < LLD $7/28/2006$ CT River Downstream 86 < LLD	7/14/2006	Discharge Forebay	84D	< LLD	7/28/2006CT River Downstream 86 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Vernon Elem School 83 Natural $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ CT River, Station 3-8 $84C$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ CT River Downstream 86 $<$ LLD $8/30/2006$ CT River Upstream 87 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural	7/28/2006			Natural	7/28/2006CT River Upstream 87 $<$ LLD $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Vernon Elem School 83 Natural $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ CT River, Station 3-8 $84C$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ CT River Upstream 86 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural					7/28/2006Miller Farm 82 Natural $7/28/2006$ Vernon Elem School 83 Natural $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ CT River, Station 3-8 $84C$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ CT River Upstream 86 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural					7/28/2006Vernon Elem School83Natural $8/15/2006$ CT River, Station 3-3 $84A$ < LLD	7/28/2006				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\begin{array}{llllllllllllllllllllllllllllllllllll$	7/28/2006		83	Natural	8/15/2006CT River, Station 3-8 $84C$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ CT River Downstream 86 $<$ LLD $8/30/2006$ CT River Upstream 87 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural		CT River, Station 3-3			8/15/2006Discharge Forebay84D< LLD8/30/2006Blodgett Farm85Natural8/30/2006Brattleboro Fire Dept88< LLD					8/30/2006Blodgett Farm85Natural8/30/2006Brattleboro Fire Dept88< LLD					8/30/2006Brattleboro Fire Dept88< LLD8/30/2006CT River Downstream86< LLD					8/30/2006CT River Downstream86< LLD8/30/2006CT River Upstream87< LLD		-			8/30/2006CT River Upstream87< LLD8/30/2006Miller Farm82Natural8/30/2006Vernon Elem School83Natural		-			8/30/2006Miller Farm82Natural8/30/2006Vernon Elem School83Natural					8/30/2006 Vernon Elem School 83 Natural														Natural
6/19/2006	Brattleboro Fire Dept	88	< LLD																																																																																																																									
6/19/2006Miller Farm 82 Natural $6/19/2006$ Vernon Elem School 83 Natural $7/14/2006$ CT River, Station 3-3 $84A$ $<$ LLD $7/14/2006$ CT River, Station 3-4 $84B$ $<$ LLD $7/14/2006$ CT River, Station 3-8 $84C$ $<$ LLD $7/14/2006$ Discharge Forebay $84D$ $<$ LLD $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $<$ LLD $7/28/2006$ CT River Downstream 86 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ CT River Upstream 86 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Wernon Elem School 83 Nat	6/19/2006	CT River Downstream	86	< LLD																																																																																																																								
6/19/2006Vernon Elem School83Natural $7/14/2006$ CT River, Station 3-3 $84A$ < LLD	6/19/2006	CT River Upstream	87	< LLD																																																																																																																								
7/14/2006CT River, Station 3-3 $84A$ $<$ LLD $7/14/2006$ CT River, Station 3-4 $84B$ $<$ LLD $7/14/2006$ CT River, Station 3-8 $84C$ $<$ LLD $7/14/2006$ Discharge Forebay $84D$ $<$ LLD $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $<$ LLD $7/28/2006$ CT River Downstream 86 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ CT River, Station 3-8 $84C$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ CT River Downstream 86 $<$ LLD $8/30/2006$ CT River Upstream 86 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural $8/30/2006$ Vernon Elem School 83 Natural	6/19/2006	Miller Farm	82	Natural																																																																																																																								
7/14/2006CT River, Station 3-4 $84B$ $< LLD$ $7/14/2006$ CT River, Station 3-8 $84C$ $< LLD$ $7/14/2006$ Discharge Forebay $84D$ $< LLD$ $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $< LLD$ $7/28/2006$ CT River Downstream 86 $< LLD$ $7/28/2006$ CT River Upstream 87 $< LLD$ $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ CT River, Station 3-3 $84A$ $< LLD$ $8/15/2006$ CT River, Station 3-3 $84A$ $< LLD$ $8/15/2006$ CT River, Station 3-4 $84B$ $< LLD$ $8/15/2006$ Discharge Forebay $84D$ $< LLD$ $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $< LLD$ $8/30/2006$ CT River Downstream 86 $< LLD$ $8/30/2006$ CT River Upstream 87 $< LLD$ $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural $8/30/2006$ Vernon Elem School 83 Natural	6/19/2006	Vernon Elem School	83	Natural																																																																																																																								
7/14/2006CT River, Station 3-8 $84C$ $< LLD$ $7/14/2006$ Discharge Forebay $84D$ $< LLD$ $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $< LLD$ $7/28/2006$ CT River Downstream 86 $< LLD$ $7/28/2006$ CT River Upstream 87 $< LLD$ $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Vernon Elem School 83 Natural $7/28/2006$ CT River, Station 3-3 $84A$ $< LLD$ $8/15/2006$ CT River, Station 3-4 $84B$ $< LLD$ $8/15/2006$ CT River, Station 3-8 $84C$ $< LLD$ $8/15/2006$ Discharge Forebay $84D$ $< LLD$ $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $< LLD$ $8/30/2006$ CT River Downstream 86 $< LLD$ $8/30/2006$ CT River Upstream 87 $< LLD$ $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural	7/14/2006	CT River, Station 3-3	84A	< LLD																																																																																																																								
7/14/2006Discharge Forebay $84D$ $< LLD$ $7/28/2006$ Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $< LLD$ $7/28/2006$ CT River Downstream 86 $< LLD$ $7/28/2006$ CT River Upstream 87 $< LLD$ $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Wernon Elem School 83 Natural $8/15/2006$ CT River, Station 3-3 $84A$ $< LLD$ $8/15/2006$ CT River, Station 3-4 $84B$ $< LLD$ $8/15/2006$ CT River, Station 3-8 $84C$ $< LLD$ $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $< LLD$ $8/30/2006$ CT River Downstream 86 $< LLD$ $8/30/2006$ CT River Upstream 87 $< LLD$ $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural	7/14/2006	CT River, Station 3-4	84B	< LLD																																																																																																																								
7/28/2006Blodgett Farm 85 Natural $7/28/2006$ Brattleboro Fire Dept 88 $<$ LLD $7/28/2006$ CT River Downstream 86 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Vernon Elem School 83 Natural $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ CT River, Station 3-8 $84C$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ CT River Downstream 86 $<$ LLD $8/30/2006$ CT River Upstream 87 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural	7/14/2006		84C	< LLD																																																																																																																								
7/28/2006Brattleboro Fire Dept 88 < LLD $7/28/2006$ CT River Downstream 86 < LLD	7/14/2006	Discharge Forebay	84D	< LLD																																																																																																																								
7/28/2006CT River Downstream 86 $<$ LLD $7/28/2006$ CT River Upstream 87 $<$ LLD $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Vernon Elem School 83 Natural $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ CT River, Station 3-8 $84C$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ CT River Downstream 86 $<$ LLD $8/30/2006$ CT River Upstream 87 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural	7/28/2006			Natural																																																																																																																								
7/28/2006CT River Upstream 87 $<$ LLD $7/28/2006$ Miller Farm 82 Natural $7/28/2006$ Vernon Elem School 83 Natural $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ CT River, Station 3-8 $84C$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ CT River Upstream 86 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural																																																																																																																												
7/28/2006Miller Farm 82 Natural $7/28/2006$ Vernon Elem School 83 Natural $8/15/2006$ CT River, Station 3-3 $84A$ $<$ LLD $8/15/2006$ CT River, Station 3-4 $84B$ $<$ LLD $8/15/2006$ CT River, Station 3-8 $84C$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ CT River Upstream 86 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural																																																																																																																												
7/28/2006Vernon Elem School83Natural $8/15/2006$ CT River, Station 3-3 $84A$ < LLD	7/28/2006																																																																																																																											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																																																																																																																												
$\begin{array}{llllllllllllllllllllllllllllllllllll$	7/28/2006		83	Natural																																																																																																																								
8/15/2006CT River, Station 3-8 $84C$ $<$ LLD $8/15/2006$ Discharge Forebay $84D$ $<$ LLD $8/30/2006$ Blodgett Farm 85 Natural $8/30/2006$ Brattleboro Fire Dept 88 $<$ LLD $8/30/2006$ CT River Downstream 86 $<$ LLD $8/30/2006$ CT River Upstream 87 $<$ LLD $8/30/2006$ Miller Farm 82 Natural $8/30/2006$ Vernon Elem School 83 Natural		CT River, Station 3-3																																																																																																																										
8/15/2006Discharge Forebay84D< LLD8/30/2006Blodgett Farm85Natural8/30/2006Brattleboro Fire Dept88< LLD																																																																																																																												
8/30/2006Blodgett Farm85Natural8/30/2006Brattleboro Fire Dept88< LLD																																																																																																																												
8/30/2006Brattleboro Fire Dept88< LLD8/30/2006CT River Downstream86< LLD																																																																																																																												
8/30/2006CT River Downstream86< LLD8/30/2006CT River Upstream87< LLD		-																																																																																																																										
8/30/2006CT River Upstream87< LLD8/30/2006Miller Farm82Natural8/30/2006Vernon Elem School83Natural		-																																																																																																																										
8/30/2006Miller Farm82Natural8/30/2006Vernon Elem School83Natural																																																																																																																												
8/30/2006 Vernon Elem School 83 Natural																																																																																																																												
				Natural																																																																																																																								

LLD: Lower limits of detection

Sample	Sample	Map	Results
Date	Location	ID No.	pCi/l
9/15/2006	CT River, Station 3-3	84A	< LLD
9/15/2006	CT River, Station 3-4	84B	< LLD
9/15/2006	CT River, Station 3-8	84C	< LLD
9/15/2006	Discharge Forebay	84D	< LLD
9/27/2006	Blodgett Farm	85	Natural
9/27/2006	Brattleboro Fire Dept	88	< LLD
9/27/2006	CT River Downstream	86	< LLD
9/27/2006	CT River Upstream	87	< LLD
9/27/2006	Miller Farm	82	Natural
9/27/2006	Vernon Elem School	83	Natural
10/13/2006	CT River, Station 3-3	84A	< LLD
10/13/2006	CT River, Station 3-4	84B	< LLD
10/13/2006	CT River, Station 3-8	84C	< LLD
10/13/2006	Discharge Forebay	84D	< LLD
10/27/2006	Blodgett Farm	85	Natural
10/27/2006	Brattleboro Fire Dept	88	< LLD
10/27/2006	CT River Downstream	86	< LLD
10/27/2006	CT River Upstream	87	< LLD
10/27/2006	Miller Farm	82	Natural
10/27/2006	Vernon Elem School	83	Natural
11/15/2006	CT River, Station 3-3	84A	< LLD
11/15/2006	CT River, Station 3-4	84B	< LLD
11/15/2006	CT River, Station 3-8	84C	< LLD
11/15/2006	Discharge Forebay	84D	< LLD
11/22/2006	Blodgett Farm	85	Natural
11/22/2006	Brattleboro Fire Dept	88	< LLD
11/22/2006	CT River Downstream	86	< LLD
11/22/2006	CT River Upstream	87	< LLD
11/22/2006	Miller Farm	82	Natural
11/22/2006	Vernon Elem School	83	Natural
12/15/2006	CT River, Station 3-3	84A	< LLD
12/15/2006	CT River, Station 3-4	84B	< LLD
12/15/2006	CT River, Station 3-8	84C	< LLD
12/15/2006	Discharge Forebay	84D	< LLD
12/21/2006	Blodgett Farm	85	Natural
12/21/2006	Brattleboro Fire Dept	88	< LLD
12/21/2006	CT River Downstream	86	< LLD
12/21/2006	CT River Upstream	87	< LLD
12/21/2006	Miller Farm	82	Natural
12/21/2006	Vernon Elem School	83	Natural

Table 17. 2006 Water Sample Gamma Radioactivity Results (continued)

LLD: Lower limits of detection

Sample	Sample	Map	Results
Date	Location	ID No.	pCi/l
1/13/2006	CT River, Station 3-3	84A	< 300
1/13/2006	CT River, Station 3-4	84B	< 300
1/13/2006	CT River, Station 3-8	84C	< 300
1/13/2006	Discharge Forebay	84D	< 300
1/23/2006	Brattleboro Fire Dept	86	< 300
1/23/2006	CT River Downstream	87	< 300
1/23/2006	CT River Upstream	82	< 300
1/23/2006	Vernon Elem School	83	< 300
2/15/2006	CT River, Station 3-3	84A	< 300
2/15/2006	CT River, Station 3-4	84B	< 300
2/15/2006	CT River, Station 3-8	84C	< 300
2/15/2006	Discharge Forebay	84D	< 300
2/21/2006	Blodgett Farm	85	< 300
2/21/2006	Brattleboro Fire Dept	88	< 300
2/21/2006	CT River Downstream	86	< 300
2/21/2006	CT River Upstream	87	< 300
2/21/2006	Miller Farm	82	< 300
2/21/2006	Vernon Elem School	83	< 300
3/14/2006	CT River, Station 3-3	84A	< 300
3/14/2006	CT River, Station 3-4	84B	< 300
3/14/2006	CT River, Station 3-8	84C	< 300
3/14/2006	Discharge Forebay	84D	< 300
3/23/2006	Blodgett Farm	85	< 300
3/23/2006	Brattleboro Fire Dept	88	< 300
3/23/2006	CT River Downstream	86	< 300
3/23/2006	CT River Upstream	87	< 300
3/23/2006	Miller Farm	82	< 300
3/23/2006	Vernon Elem School	83	< 300
4/14/2006	CT River, Station 3-3	84A	< 300
4/14/2006	CT River, Station 3-4	84B	< 300
4/14/2006	CT River, Station 3-8	84C	< 300
4/14/2006	Discharge Forebay	84D	< 300
4/18/2006	Blodgett Farm	85	< 300
4/18/2006	Brattleboro Fire Dept	88	< 300
4/18/2006	CT River Downstream	86	< 300
4/18/2006	CT River Upstream	87	< 300
4/18/2006	Miller Farm	82	< 300
4/18/2006	Vernon Elem School	83	< 300

Table 18. 2006 Water Sample Tritium Results

Sample	Sample Sample		Results
Date	Location	ID No.	pCi/l
5/15/2006	CT River, Station 3-3	84A	< 300
5/15/2006	CT River, Station 3-4	84B	< 300
5/15/2006	CT River, Station 3-8	84C	< 300
5/15/2006	Discharge Forebay	84D	< 300
5/16/2006	Blodgett Farm	85	< 300
5/16/2006	Brattleboro Fire Dept	88	< 300
5/16/2006	CT River Downstream	86	< 300
5/16/2006	CT River Upstream	87	< 300
5/16/2006	Miller Farm	82	< 300
5/16/2006	Vernon Elem School	83	< 300
6/16/2006	CT River, Station 3-3	84A	< 300
6/16/2006	CT River, Station 3-4	84B	< 300
6/16/2006	CT River, Station 3-8	84C	< 300
6/16/2006	Discharge Forebay	84D	< 300
6/19/2006	Blodgett Farm	85	< 300
6/19/2006	Brattleboro Fire Dept	88	< 300
6/19/2006	CT River Downstream	86	< 300
6/19/2006	CT River Upstream	87	< 300
6/19/2006	Miller Farm	82	< 300
6/19/2006	Vernon Elem School	83	< 300
7/14/2006	CT River, Station 3-3	84A	< 300
7/14/2006	CT River, Station 3-4	84B	< 300
7/14/2006	CT River, Station 3-8	84C	< 300
7/14/2006	Discharge Forebay	84D	< 300
7/28/2006	Blodgett Farm	85	< 300
7/28/2006	Brattleboro Fire Dept	88	< 300
7/28/2006	CT River Downstream	86	< 300
7/28/2006	CT River Upstream	87	< 300
7/28/2006	Miller Farm	82	< 300
7/28/2006	Vernon Elem School	83	< 300
8/15/2006	CT River, Station 3-3	84A	< 300
8/15/2006	CT River, Station 3-4	84B	< 300
8/15/2006	CT River, Station 3-8	84C	< 300
8/15/2006	Discharge Forebay	84D	< 300
8/30/2006	Blodgett Farm	85	< 300
8/30/2006	Brattleboro Fire Dept	88	< 300
8/30/2006	CT River Downstream	86	< 300
8/30/2006	CT River Upstream	87	< 300
8/30/2006	Miller Farm	82	< 300
8/30/2006	Vernon Elem School	83	< 300

Table 18. 2006 Water Sample Tritium Results (continued

Sample	Sample	Мар	Results
Date	Location	ID No.	pCi/l
9/15/2006	CT River, Station 3-3	84A	< 300
9/15/2006	CT River, Station 3-4	84B	< 300
9/15/2006	CT River, Station 3-8	84C	< 300
9/15/2006	Discharge Forebay	84D	< 300
9/27/2006	Blodgett Farm	85	< 300
9/27/2006	Brattleboro Fire Dept	88	< 300
9/27/2006	CT River Downstream	86	< 300
9/27/2006	CT River Upstream	87	< 300
9/27/2006	Miller Farm	82	< 300
9/27/2006	Vernon Elem School	83	< 300
10/13/2006	CT River, Station 3-3	84A	< 300
10/13/2006	CT River, Station 3-4	84B	< 300
10/13/2006	CT River, Station 3-8	84C	< 300
10/13/2006	Discharge Forebay	84D	< 300
10/27/2006	Blodgett Farm	85	< 300
10/27/2006	Brattleboro Fire Dept	88	< 300
10/27/2006	CT River Downstream	86	< 300
10/27/2006	CT River Upstream	87	< 300
10/27/2006	Miller Farm	82	< 300
10/27/2006	Vernon Elem School	83	< 300
11/15/2006	CT River, Station 3-3	84A	< 300
11/15/2006	CT River, Station 3-4	84B	< 300
11/15/2006	CT River, Station 3-8	84C	< 300
11/15/2006	Discharge Forebay	84D	< 300
11/22/2006	Blodgett Farm	85	< 300
11/22/2006	Brattleboro Fire Dept	88	< 300
11/22/2006	CT River Downstream	86	< 300
11/22/2006	CT River Upstream	87	< 300
11/22/2006	Miller Farm	82	< 300
11/22/2006	Vernon Elem School	83	< 300
12/15/2006	CT River, Station 3-3	84A	< 300
12/15/2006	CT River, Station 3-4	84B	< 300
12/15/2006	CT River, Station 3-8	84C	< 300
12/15/2006	Discharge Forebay	84D	< 300
12/21/2006	Blodgett Farm	85	< 300
12/21/2006	Brattleboro Fire Dept	88	< 300
12/21/2006	CT River Downstream	86	< 300
12/21/2006	CT River Upstream	87	< 300
12/21/2006	Miller Farm	82	< 300
12/21/2006	Vernon Elem School	83	< 300

Table 18. 2006 Water Sample Tritium Results (continued)

Food Chain Sampling Results

Monitoring of the food chain involves direct monitoring of some foods such as milk, cultivated vegetation and fish. It also involves monitoring of the soil and sediment that support land and aquatic species, and natural vegetation like grass, ferns, and fungi that serves as feed to land animals.

Milk Sample Results for 2006

Cow's raw milk is sampled monthly from two farms in Vernon. One farm is about onehalf mile north of Vermont Yankee Nuclear Power Station and the other is about three miles south of the plant. Map 10 shows the location of these two dairy farms.

Milk is analyzed for all gamma radiation-emitting radioactive materials, and a separate assessment for iodine-131 is conducted. Table 20 shows the iodine-131 results. The analysis found no iodine-131 greater than the lower limit of detection, which is 2.26 picocuries per liter (pCi/l).

As recorded in Table 21, the gamma spectroscopy of milk also revealed no nuclear facility-generated radioactive materials in excess of the counting system's lower limits of detection. The lower limits of detection for the radioactive materials are in Table 22.

The one radioactive material that was detected above its lower limit of detection was potassium-40, a primordial radioactive material. Primordial radioactive materials are those created with the formation of the earth and other cosmic features. Potassium-40 has a half-life of 1,280,000,000 years. The gamma spectroscopy results are presented in Table 21. The potassium-40 results for all milk samples, ranging from 1380 to 1670 pCi/l, fall within the historical range for potassium-40 of 1,200 to 2,000 pCi/l.

Vegetation Sample Results for 2006

A variety of natural and cultivated plants are sampled to verify that no Vermont Yankee Nuclear Power Station radioactive materials are accumulating in the human and animal food chains. In the spring of 2006, various grasses and ferns were sampled, while in the fall of 2006, corn was sampled from a farm in Vernon and fungi were sampled from Vernon Elementary School and Indian Point Park in Vernon. These locations are shown on Map 11.

The results of gamma spectroscopy are shown in Table 23. With the exception of the fungi samples, only natural beryllium-7 and potassium-40 were identified in excess of the counting system lower limit of detection. As described previously for the quarterly composite air filter gamma spectroscopy samples, beryllium-7 is a natural, cosmogenic radioactive material and, as described for the milk samples above, potassium-40 is a naturally-occurring, primordial radioactive material.

The fungi samples continue to indicate the environmental accumulation of cesium-137 from above-ground nuclear tests and the releases from Chernobyl after the reactor accident there in 1986. This conclusion that the cesium-137 is from those sources and not from Vermont Yankee Nuclear Power Station is drawn from the fact that the historical range of 30 year half-life cesium -137 in fungi has ranged from 50 to 9,000 picocuries per kilogram. The sample results for 2006 were 1390 picocuries per kilogram (pCi/kg), and this is closer to the lower end of the historical value range for cesium-137.

Soil Sample Results for 2006

Soil samples were also collected in the spring and fall of 2006. The locations for these samples, all in Vernon, are shown in Map 12. The samples were subjected to gamma spectroscopy like the air, water, milk, vegetation, sediment and fish samples. The results are presented in Table 24. Like the other samples, results greater than the lower limits of detection were primarily naturally-occurring beryllium-7 and potassium-40.

Five samples in the spring of 2006 also indicated cesium-137. The cesium-137 is near the historical range for cesium-137 in soil. Over the 35 years of soil sampling in the vicinity of Vermont Yankee Nuclear Power Station, the Vermont Department of Health has measured cesium-137 up to 1780 picocuries per kilogram (pCi/kg). The 2006 samples were between 52.5 and 548 pCi/kg. The Vermont Department of Health believes these cesium-137 radioactive materials are likely the result of human activities other than the operations at Vermont Yankee Nuclear Power Station. These activities include atmospheric nuclear weapons testing and the release following the accident in Chernobyl in 1986. The lower limits of detection for soil samples are Table 22 below.

Sediment Sample Results for 2006

Sediment samples are taken from the bottom of the Connecticut River by an environmental contractor. The samples in this report are analyzed by the Vermont Department of Health Laboratory. The sediment samples are taken from four areas of the Connecticut River. The first is near what is called the North Storm Drain. It is an area where radioactive sedimentary contaminants from Vermont Yankee Nuclear Power Station were discovered prior to 1998, and it is an area just east of the plant stack. Sample locations S-1, S-2, T-1, T-2, T-3, U-1, U-2, U-3, U-4, V-1, V-2, V-3, V-4, V-5, W-4, W-5 and X-5 are from this North Storm Drain area.

The second location is in the pool upstream of the Vernon Dam, near the primary plant discharge at the south end of the plant property near the cooling towers. In Table 25, the samples for location 3-4 are from this part of the Connecticut River. The third location, 3-3, is south of the Vernon Dam in the pool created downstream of the hydroelectric facility there, while the final sample location, 3-8, is well upstream of the plant where the Route 9 highway bridge crosses the Connecticut River north of Brattleboro.

Two sets of samples are obtained, one set in the spring and one set in the fall. A sediment sample is taken with a mass ranging from 0.75 to 1.25 kilograms. At the Vermont Department of Health Laboratory, the sample is dried, weighed on a top-loaded balance

and placed in a 500 milliliter high density polyethylene bottle. The sample is counted on the gamma spectrometer system using a reverse germanium detector. A normal spectrum will include naturally occurring, primordial radioactive materials such as potassium-40, cosmogenic, naturally occurring radioactive materials such as beryllium-7, and archival cesium-137 from past atmospheric nuclear weapons testing and the releases from Chernobyl. North Storm Drain samples in the past included trace amounts of cobalt-60.

For 2006, cosmogenic beryllium-7 is within the historical range of the lower limit of detection to 3,000 picocuries per kilogram (pCi/kg) at 513 - 863 pCi/kg, Primordial potassium-40 is within the historical range of 6,000 - 26,000 pCi/kg at 8,840 - 24,500 pCi/kg. The archival cesium-137 is within the historical range of the lower limit of detection to 500 pCi/kg at 65 - 230 pCi/kg. There were no other radioactive materials in excess of the counting system's lower limits of detection. The lower limits of detection for sediment are the same as those for soil, and shown in Table 22.

Fish Sample Results for 2006

Table 26 presents the results of gamma spectroscopy of fish samples. The fish were obtained from the Connecticut River by an environmental contractor. The fish samples were analyzed by the Vermont Department of Health Laboratory. Table 25 shows that the only results in excess of the counting system's lower limits of detection were for naturally occurring, cosmogenic potassium-40. Potassium-40 in 2006, ranging from 2,920 to 3,440 pCi/kg falls within the historical range for these samples: 1,000 – 5,000 pCi/kg.

Location 3-4 in the table above corresponds with the Vernon Pond, the basin formed by the Vernon Dam on the Connecticut River just downstream from Vermont Yankee Nuclear Power Station. Location 3-8 is near the Route 9 highway bridge north of Brattleboro. Fish are captured via an electroshock method. The fish are frozen whole, weighed and chopped or blended for loading into a reentrant beaker. The sample of about

Vermont Department of Health Food Chain Sampling Results

one kilogram is then analyzed with a gamma spectrometer system using a reverse electrode germanium detector.

Table 19. Gamma Spectroscopy Lower Limits of Detection for Milk, Water,Vegetation and Fish Samples

Radioactive material	Lower Limit of Detection
Cerium-144	2.16 pCi/l
Cerium-141	2.21 pCi/l
Cerium-139	2.24 pCi/l
Chromium-51	2.31 pCi/l
Barium-133	2.31 pCi/l
Iodine-131	2.26 pCi/l
Antimony-126	2.14 pCi/l
Ruthenium-103	2.59 pCi/l
Strontium-85	3.59 pCi/l
Antimony-124	2.56 pCi/l
Cesium-134	2.61 pCi/l
Ruthenium-106	2.44 pCi/l
Cesium-137	2.49 pCi/l
Cesium-134	2.76 pCi/l
Cesium-136	2.78 pCi/l
Manganese-54	2.50 pCi/l
Cobalt-56	2.80 pCi/l
Yttrium-88	2.81 pCi/l
Zinc-65	3.31 pCi/l
Cobalt-60	3.04 pCi/l
Potassium-40	4.26 pCi/l

Vermont Department of Health Food Chain Sampling Results

Map 10

Environmental Radiation Surveillance Stations Milk Sample Locations

Sample	Sample	Мар	Results	Results	Error
Date	Location	ID No.	Nuclides	pCi/l	pCi/l
1/23/2006	Blodgett Farm	90	I-131	< 2.26	N/A
1/23/2006	Miller Farm	89	I-131	< 2.26	N/A
2/21/2006	Blodgett Farm	90	I-131	< 2.26	N/A
2/21/2006	Miller Farm	89	I-131	< 2.26	N/A
3/23/2006	Blodgett Farm	90	I-131	< 2.26	N/A
3/23/2006	Miller Farm	89	I-131	< 2.26	N/A
4/18/2006	Blodgett Farm	90	I-131	< 2.26	N/A
4/18/2006	Miller Farm	89	I-131	< 2.26	N/A
5/16/2006	Blodgett Farm	90	I-131	< 2.26	N/A
5/16/2006	Miller Farm	89	I-131	< 2.26	N/A
6/19/2006	Blodgett Farm	90	I-131	< 2.26	N/A
6/19/2006	Miller Farm	89	I-131	< 2.26	N/A
7/28/2006	Blodgett Farm	90	I-131	< 2.26	N/A
7/28/2006	Miller Farm	89	I-131	< 2.26	N/A
8/30/2006	Blodgett Farm	90	I-131	< 2.26	N/A
8/30/2006	Miller Farm	89	I-131	< 2.26	N/A
9/27/2006	Blodgett Farm	90	I-131	< 2.26	N/A
9/27/2006	Miller Farm	89	I-131	< 2.26	N/A
10/26/2006	Blodgett Farm	90	I-131	< 2.26	N/A
10/26/2006	Miller Farm	89	I-131	< 2.26	N/A
11/22/2006	Blodgett Farm	90	I-131	< 2.26	N/A
11/22/2006	Miller Farm	89	I-131	< 2.26	N/A
12/21/2006	Blodgett Farm	90	I-131	< 2.26	N/A
12/21/2006	Miller Farm	89	I-131	< 2.26	N/A

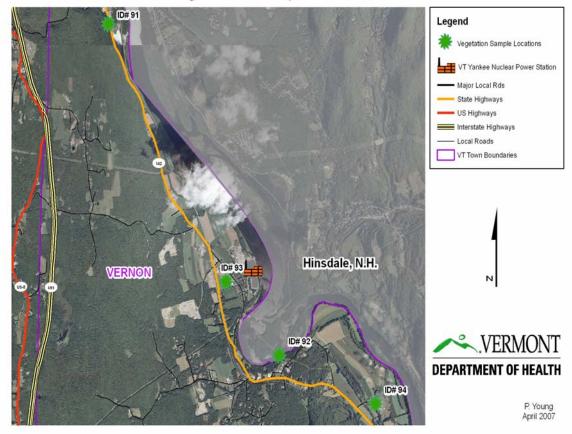
Table 20. 2006 Milk Sample Iodine-131 Results

Sample	Sample	Мар	Results	Results	Error
Date	Location	ID No.	Nuclides	pCi/l	pCi/l
1/23/2006	Blodgett Farm	90	K-40	1540	120
1/23/2006	Miller Farm	89	K-40	1490	100
2/21/2006	Blodgett Farm	90	K-40	1480	100
2/21/2006	Miller Farm	89	K-40	1560	120
3/23/2006	Blodgett Farm	90	K-40	1380	90
3/23/2006	Miller Farm	89	K-40	1490	120
4/18/2006	Blodgett Farm	90	K-40	1440	100
4/18/2006	Miller Farm	89	K-40	1450	100
5/16/2006	Blodgett Farm	90	K-40	1650	120
5/16/2006	Miller Farm	89	K-40	1410	100
6/19/2006	Blodgett Farm	90	K-40	1430	100
6/19/2006	Miller Farm	89	K-40	1590	100
7/28/2006	Blodgett Farm	90	K-40	1540	100
7/28/2006	Miller Farm	89	K-40	1530	110
8/30/2006	Blodgett Farm	90	K-40	1450	100
8/30/2006	Miller Farm	89	K-40	1450	100
9/27/2006	Blodgett Farm	90	K-40	1570	100
9/27/2006	Miller Farm	89	K-40	1480	100
10/26/2006	Blodgett Farm	90	K-40	1640	130
10/26/2006	Miller Farm	89	K-40	1660	110
11/22/2006	Blodgett Farm	90	K-40	1670	130
11/22/2006	Miller Farm	89	K-40	1380	100
12/21/2006	Blodgett Farm	90	K-40	1600	130
12/21/2006	Miller Farm	89	K-40	1420	100

Table 21. 2006 Milk Sample Gamma Radioactivity Results

Radioactive material	Lower Limit of Detection
Beryllium-7	11.2 pCi/kg
Cesium-134	12.3 pCi/kg
Silver-110m	13.7 pCi/kg
Cesium-137	14.3 pCi/kg
Manganese-54	15.4 pCi/kg
Cobalt-60	19.3 pCi/kg
Potassium-40	11.3 pCi/kg

Table 22. Lower Limits of Detection for Soil and Sediment Samples


Table 23. 2006 Vegetation Gamma Radioactivity Results

Sample	Sample	Map	Results	Error	Results	Comment
Date	Location	ID No.	pCi/kg	pCi/kg	Nuclides	
5/16/2006	Blodgett Farm	94	1850	340	Be-7	Grass
5/16/2006	Blodgett Farm	94	4330	550	K-40	Grass
5/16/2006	Power Line River Crossing	92	2530	290	K-40	Fern
5/16/2006	Vernon Elementary School	93	1950	260	Be-7	Grass
5/16/2006	Vernon Elementary School	93	4270	450	K-40	Grass
9/27/2006	Power Line River Crossing	92	4880	260	K-40	Grass
9/27/2006	Power Line River Crossing	92	1860	260	Be-7	Grass
9/27/2006	Blodgett Farm	94	3410	270	K-40	Corn
9/27/2006	Blodgett Farm	94	386	88	Be-7	Corn
9/27/2006	Vernon Indian Point Park	91	5700	480	K-40	Fungi
9/27/2006	Vernon Indian Point Park	91	1390	90	Cs-137	Fungi
9/27/2006	Vernon Elementary School	93	3350	430	K-40	Fungi
9/27/2006	Vernon Elementary School	93	480	174	Be-7	Fungi

Vermont Department of Health Food Chain Sampling Results

Map 11

Environmental Radiation Surveillance Stations Vegetation Sample Locations

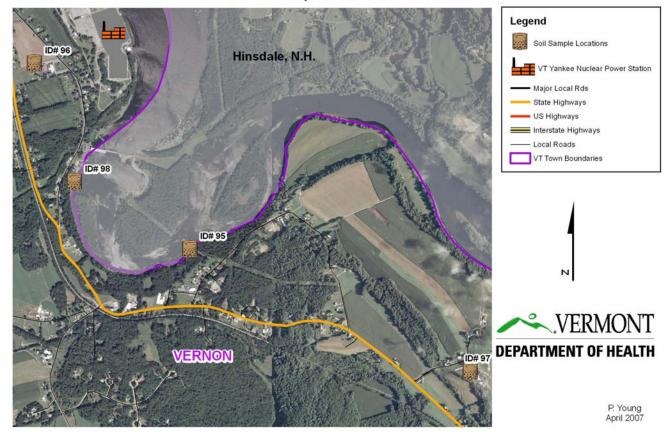

Sample	Sample	Map	Results	Error	Results
Date	Location	ID No.	pCi/kg	pCi/kg	Nuclides
5/16/2006	Power Line River Crossing	95	12700	800	K-40
5/16/2006	Power Line River Crossing	95	281	223	Be-7
5/16/2006	Power Line River Crossing	95	52.5	28.8	Cs-137
5/16/2006	Blodgett Farm	97	84.7	26.8	Cs-137
5/16/2006	Blodgett Farm	97	11500	700	K-40
5/16/2006	Blodgett Farm	97	345	144	Be-7
5/16/2006	Vernon Elementary School	96	11400	700	K-40
5/16/2006	Vernon Elementary School	96	74.7	19	Cs-137
9/27/2006	Power Line River Crossing	95	4880	260	K-40
9/27/2006	Power Line River Crossing	95	1830	360	Be-7
9/27/2006	CT River Downstream	98	13100	900	K-40
9/27/2006	CT River Downstream	98	352	46	Cs-137
9/27/2006	Vernon Indian Point Park	91	12100	1000	K-40
9/27/2006	Vernon Indian Point Park	91	548	54	Cs-137
9/27/2006	Vernon Elementary School	96	12100	700	K-40
9/27/2006	Vernon Elementary School	96	62.9	18.2	Be-7

Table 24. 2006 Soil Sample Gamma Radioactivity Results

Vermont Department of Health Food Chain Sampling Results

Map 12

Environmental Radiation Surveillance Stations Soil Sample Locations

Sample	Sample	Results	Results	Error	Comment
Date	Location	Nuclides	pCi/kg	pCi/kg	
5/5/2006	T-1	K-40	12400	700	Natural
5/5/2006	T-1	Cs-137	106	27	
5/5/2006	T-2	K-40	11400	700	Natural
5/5/2006	T-2	Cs-137	66.7	21.5	
5/5/2006	T-3	K-40	16900	1000	Natural
5/5/2006	T-3	Cs-137	203	44	
5/5/2006	U-2	K-40	19400	1200	Natural
5/5/2006	U-2	Cs-137	138	32	
5/5/2006	U-3	K-40	21000	1300	Natural
5/5/2006	U-3	Cs-137	119	34	
5/5/2006	U-4	K-40	16400	1000	Natural
5/5/2006	U-4	Cs-137	94.5	33.9	
5/5/2006	V-3	K-40	20500	1200	Natural
5/5/2006	V-3	Cs-137	171	43	
5/5/2006	V-4	K-40	17700	1100	Natural
5/5/2006	V-4	Cs-137	121	43	
5/5/2006	V-5	K-40	16500	1000	Natural
5/5/2006	V-5	Cs-137	134	30	
5/5/2006	W-4	K-40	17700	1200	Natural
5/5/2006	W-4	Cs-137	112	43	
5/5/2006	V-1	K-40	12800	800	
5/5/2006	W-5	K-40	17200	1000	Natural
5/5/2006	W-5	Cs-137	161	44	
5/5/2006	X-5	K-40	17800	1100	Natural
5/5/2006	X-5	Cs-137	99.9	34.6	
5/5/2006	3-3	K-40	12600	800	Natural
5/5/2006	3-3	Be-7	513	268	
5/5/2006	3-4	K-40	14200	900	Natural
5/5/2006	3-4	Cs-137	78.7	25.5	
5/5/2006	S-1	K-40	24500	1600	Natural
5/5/2006	S-1	Cs-137	230	62	
5/5/2006	S-2	K-40	21600	1300	Natural
5/5/2006	S-2	Cs-137	159	41	
5/5/2006	3-8	K-40	11200	700	Natural

Table 25. 2006 Sediment Sample Gamma Radioactivity Results

Sample	Sample	Results	Results	Error	Comment
Date	Location	Nuclides	pCi/kg	pCi/kg	
10/19/2006	X-5	K-40	19100	1300	Natural
10/19/2006	X-5	Cs-137	164	45	
10/19/2006	U-2	K-40	19900	1200	Natural
10/19/2006	U-2	Cs-137	127	35	
10/19/2006	3-4	K-40	13600	1000	Natural
10/19/2006	3-4	Cs-137	68.5	24.8	
10/19/2006	S-1	K-40	20300	1200	Natural
10/19/2006	S-1	Cs-137	137	44	
10/19/2006	U-3	K-40	19400	1300	Natural
10/19/2006	U-3	Cs-137	178	44	
10/19/2006	S-2	K-40	12500	800	Natural
10/19/2006	S-2	Cs-137	59.5	25.9	
10/19/2006	U-4	K-40	19100	1300	Natural
10/19/2006	U-4	Cs-137	132	41	
10/19/2006	T-1	K-40	10900	700	Natural
10/19/2006	T-1	Cs-137	65.5	21.5	
10/19/2006	V-3	K-40	22200	1500	Natural
10/19/2006	V-3	Cs-137	143	37	
10/19/2006	T-2	K-40	17100	1100	Natural
10/19/2006	T-2	Cs-137	162	39	
10/19/2006	T-2	Be-7	862	437	
10/19/2006	V-4	K-40	22400	1500	Natural
10/19/2006	V-4	Cs-137	137	41	
10/19/2006	T-3	K-40	20500	1200	Natural
10/19/2006	T-3	Cs-137	158	41	
10/19/2006	V-5	K-40	19400	1400	Natural
10/19/2006	V-5	Cs-137	98	33.7	
10/19/2006	U-1	K-40	14400	1000	Natural
10/19/2006	U-1	Cs-137	98.5	27.5	
10/19/2006	W-4	K-40	20100	1400	Natural
10/19/2006	W-4	Cs-137	159	37	
10/19/2006	3-8	K-40	17300	1000	Natural
10/19/2006	3-8	Cs-137	68.5	29.7	
10/19/2006	W-5	K-40	19100	1200	Natural
10/19/2006	W-5	Cs-137	88.1	36.3	
10/19/2006	3-3	K-40	8840	610	Natural

Table 25. 2006 Sediment Sample Gamma Radioactivity Results (continued)

Sample	Sample	Results	Error	Results
Date	Location	pCi/kg	pCi/kg	Nuclides
5/4/2006	3-8	3440	310	K-40
5/22/2006	3-4	3100	240	K-40
11/9/2006	3-8	2920	220	K-40
10/18/2006	3-4	3040	280	K-40

Table 26. 2006 Fish Sample Gamma Radioactivity Results